
ThingWorx C SDK
Developer’s Guide

Version 1.3.0
August 2015

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document..

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view
offenders accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly
and criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and transmit
data on users of illegal copies of our software. This data collection is not performed on users of legally
licensed software from PTC and its authorized distributors. If you are using an illegal copy of our software
and do not consent to the collection and transmission of such data (including to the United States), cease
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-
7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2) (JUN’87),
as applicable. 01012015

01012015

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

About this Guide ...7

C SDK.. 11
Introducing the C SDK...12
Installing and Navigating the C SDK Directories ..13
Getting Started ...18

Configuring the C SDK...21
Configuring Components for an Application ..22
Minimizing Code Footprint ...25

Setting Up an Application...27
Overview..28
Defining Properties ...28
Defining Events ..33
Define Property Callback Functions ...33
Define Service Callback Functions ...35
Create Your Tasks (Optional) ...36
Creating a Bind Event Handler (Optional) ...37
Create a File Transfer Event Handler (Optional) ..37
Create a Tunnel Event Handler (Optional) ..38

Running the C SDK ...39
Initializing the API Singleton ..40
Registering Properties and Services...41
Registering Events..42
Binding Your Entities ...42
Initializing the File Manager (Optional)..42
Initializing the Tunnel Manager (Optional) ...43
Creating a Bind Event Handler (Optional) ...44
Connect to the Server and Initiate any Defined Tasks ..44

Interacting with the ThingWorx Platform ..47
Basic Data Structures ...48
Server-Initiated Interaction ..53
SDK Application-Initiated Interaction ..57

Building an Application ..63
Introduction ..64
Building Your Applications ...64
Supporting New Platforms...65

Porting to Another Platform ..67
Requirements for Platforms ...68

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 5

Defining the Chosen OS..69
TLS Support...69
Logging Functions ..70
Memory Management Functions..71
Date/Time Functions...71
Synchronization Functions ..72
Socket Functions ..73
Tasker Functions ..74
File System Functions...74
Native Threads...75

TLS Provider Plugins...77
TLS Implementation (AxTLS)...78

Appendix A.Error Codes ..83

Appendix B.Callback Function Return Codes ..97

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 6

About this Guide

ThingWorx has introduced Software Development Kits (SDKs) in several
languages that allow you to develop machine/device functionality for your
products, and to easily connect them to a ThingWorx server. These SDKs can
either be implemented as a Gateway to several connected products, or embedded
directly within a product on a one-to-one basis.
All ThingWorx SDKs share a common reference implementation and provide a
secure communication channel to the ThingWorx server, allowing a machine/
device to participate fully in a ThingWorx solution.
This document describes how to use the ThingWorx C SDK. The complete API
reference is available in the C SDK bundle.

Note
This document is accurate as of this release and is subject to change. For the
latest documentation, see the Help Center available at PTC ThingWorx
eSupport, https://support.ptc.com/appserver/cs/portal/.

Pre-requisites
This document assumes that you have a solid background in the C/C++
programming language (for example, C for the C SDK). Further, it assumes that
you have had at least basic training in ThingWorx. For example, you know how to
use the ThingWorx Composer and understand the main concepts of things,
datashapes, properties, events, and services.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 7

https://support.ptc.com/appserver/cs/portal/

To develop an application using the C SDK, you need to have a C/C++
development environment. No specific compiler version is required, but the
compiler must be C99 (the C language spec) compatible.
To get started, it is recommended that you review the sample projects provided in
the SDK. To use these examples, you need Microsoft Visual Studio

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax, or e-mail if you
encounter problems using your product or the product documentation.
For complete details, refer to Contacting Technical Support in the PTC Customer
Service Guide. This guide can be found under the Related Resources section of the
PTC Web site at:
http://www.ptc.com/support/
The PTC Web site also provides a search facility for technical documentation of
particular interest. To access this search facility, use the URL above and search the
knowledge base.
You must have a Service Contract Number (SCN) before you can receive
technical support. If you do not have an SCN, contact PTC Maintenance
Department using the instructions found in your PTC Customer Service Guide
under Contacting Your Maintenance Support Representative.

Documentation for PTC ThingWorx Products
You can access PTC ThingWorx documentation, using the following resources:

• PTC ThingWorx Help Center — The PTC ThingWorx Help Center includes
documentation for the PTC ThingWorx Platform, the PTC ThingWorx Edge
MicroServer (EMS), and all the SDKs. You can browse the entire
documentation set, or use the search capability to perform a keyword search.
To access the PTC ThingWorx Help Center, visit ThingWorx Help Center.

• PTC ThingWorx Reference Documentation — The Reference Documents
website provides access to the PDF documents available for the PTC
ThingWorx Edge SDKs and the PTC ThingWorx Platforms at http://support.
ptc.com/appserver/cs/doc/refdoc.jsp, These PDF documents include System
Requirements documents.

A Service Contract Number (SCN) is required to access the PTC
documentation from the Reference Documents website. If you do not know
your SCN, see “Preparing to contact TS” on the Processes tab of the PTC
Customer Support Guide for information about how to locate it: http://support.
ptc.com/appserver/support/csguide/csguide.jsp. When you enter a keyword in
the Search Our Knowledge field on the PTC eSupport portal, your search
results include both knowledge base articles and PDF guides.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 8

http://www.ptc.com/support/
https://support.ptc.com/appserver/cs/help/help.jsp
https://support.ptc.com/appserver/cs/doc/refdoc.jsp?p=browse_results&Product=ThingWorx&Release=&DocType=&Role
https://support.ptc.com/appserver/cs/doc/refdoc.jsp?p=browse_results&Product=ThingWorx&Release=&DocType=&Role
http://support.ptc.com/appserver/support/csguide/csguide.jsp
http://support.ptc.com/appserver/support/csguide/csguide.jsp

Comments
PTC welcomes your suggestions and comments on our documentation. To submit
your feedback, you can:

• Send an email to documentation@ptc.com. To help us more quickly address
your concern, include the name of the PTC product and its release number
with your comments. If your comments are about a specific help topic or
book, include the title.

• Click the feedback icon in the PTC ThingWorx Help Center toolbar and
complete the feedback form. The title of the help topic you were viewing
when you clicked the icon is automatically included with your feedback.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 9

mailto:documentation@ptc.com

1
CSDK

Introducing the C SDK ...12
Installing and Navigating the C SDK Directories...13
Getting Started..18

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 11

Introducing the C SDK
This section provides an introduction to the C SDK, explains its purpose,
requirements for using it, and main features. It then explains how to install the
SDK and provides a table that shows the directories and files in the installation.
Finally, this section provides a Getting Started section, which contains an
overview of the process for creating an application using the C SDK. This process
references later sections of this document where you can find more details.

About the C SDK
The ThingWorx C SDK is a lightweight, but fully functional implementation of
the ThingWorx AlwaysOn™ binary protocol. It is designed to minimize memory
footprint while making it easy to integrate applications into the ThingWorx
distributed computing environment of the Internet of Things. The goal of the C
SDK is to make creating applications that use it simple, but to also give the
developer enough flexibility to create very sophisticated applications. For
example, the SDK contains a simple “tasker” framework that you can use to call
functions repeatedly at a set interval. You can use the tasker framework to drive
not only the connectivity layer of you application, but also the functionality of
your application. However, it is not required to use the tasker at all. The API is
thread safe and can be used in a complex multithreaded environment as well.
Other examples of this flexibility are highlighted in this documentation.

Purpose
The three primary functions of the SDK are as follows:
• Establish and manage a secure AlwaysOn connection with the ThingWorx

Platform. This includes SSL negotiation, duty-cycle modulation, and
connection maintenance such as reestablishing a connection after network
connectivity is lost and restored.

• Enable easy programmatic interaction with the properties, services, and events
that are exposed by entities running on the ThingWorx Platform.

• Implement a callback infrastructure that makes it easy to expose a set of
properties and services to the ThingWorx Platform. These properties and
services can be surfaced from multiple entities. When a request is made from
the server for a registered property or service, a callback is made to a function
you supply during the registration process.

As previously mentioned, the SDK also includes a simple tasker you can use to
drive data collection routines and other application-level functionality.
The SDK uses callback functions to notify your application of requests for
property reads and writes as well as requests to execute a service. The callback
function signatures are defined in the twApi.h file. Your application can register
properties and services along with their metadata with the API. The metadata is

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 12

used when browsing remote entities from ThingWorx Composer, making it simple
to import functionality created in your application as a Thing or ThingTemplate
into your application model.
The properties, services, and events for server-side Things are easily accessed
through appropriate API calls: twApi_ReadProperty/twApi_
WriteProperty, twAPI_InvokeService, and twApi_FireEvent,
respectively.

Features
The C SDK supports the following functionality that allows your machine, device,
or application to work with theThingWorx Platform:
• Data Shapes — allow you to create DataShape definitions to model types of

metadata for a remote machine/device.
• File transfer — used for remote directory/file browsing with the ThingWorx

server, and to permit bidirectional file transfer between a machine/device and
the ThingWorx server.

• Tunneling — allows you to establish secure, firewall transparent application
tunnels for TCP client application tunnels, such as VNC and SSH.

• Proxy settings — used to enable connections from a proxy server.
• Client/server certificate validation — allows you to enable/disable various

levels of SSL/TLS Certificate validation.
• Offline message storage — enabled by default, queues outgoing messages if

the network is down, or if the AlwaysOn protocol duty cycle modulation
components is in the “off” state.

• Subscribed properties — allows events to subscribe to changes in property
values and other aspects of properties.

Installing and Navigating the C SDK
Directories
Installation
To install the C SDK, download the C SDK bundle to your computer, and extract
the files.

Directories and Files
The installation includes the following directories and files:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 13

This Directory Contains See Also
build/
platforms

Subdirectories for all
supported platforms. Each
subdirectory contains the
Makefile appropriate to the
platform (Linux platforms) or
sln, vcproj, and
vcproj.filters files
needed to build your
application for the target
platform.

Building an Application on
page 63

doc The PDF file for this
document.

The Help Center, available at
PTC ThingWorx eSupport,
https://support.ptc.com/
appserver/cs/portal/.

examples Subdirectories for the various
SteamSensor examples. Each
subdirectory contains
subdirectories for the source
file (main.c) and for target
platforms (Linux and Win32).

For information about
building and running these
examples, refer to the
document, SDK Steam
Sensor Example, which is
available in the Help Center,
at https://support.ptc.com/
appserver/cs/portal/.

src/api The following API source (*.
c) and header (*.h) files for
the C SDK:
• twApi.c, twApi.h

• twDefinitions.c,
twDefinitions.h
contains the enumerated
message types, message
codes (status, errors), as
well as type definitions
(characteristic, BaseType,
entityType).

• twErrors.h contains
definitions for different
types of errors, including
websocket, messaging,
primitive/infotable, api,
tasker, logger, utils,

Initialize the API Singleton
on page 40
Register Properties and
Services on page 41
twPrimitiveStructure on page
48
Base Types on page 48
twInfoTable on page 50
Property Access Callbacks on
page 53
Service Callbacks on page 55
SDK Application-Initiated
Interaction on page 57
Error Codes on page 83
(twErrors.h)

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 14

https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/
https://support.ptc.com/appserver/cs/portal/

This Directory Contains See Also
system socket, file
transfer, tunneling, and
managed property. It also
contains the #defines
for the msgCodeEnum
errors.

• twProperties.c,
twProperties.h

• twServices.c,
twServices.h

• twVersion.h

CallBack Function Return
Codes on page 97
(twDefinitions.h)

src/config Two configuration files,
twConfig.h and
twDefaultSettings.h.
As its name implies, the
twDefaultSettings.h
file contains default settings
for the C SDK. The
twConfig.h file is
provided should you need to
override common settings
provided in the Windows
Solution (sln) or gcc
Makefiles. Use this file only
if you are not using one of
these provided files to do per
project configuration. Note
that the settings here apply to
ALL of your projects that use
the SDK.

Configuring Components for
an Application on page 22
Building an Application on
page 63

src/
fileTransfer

This directory contains the
source and header files for the
file transfer functionality of
the C SDK,
twFileManager.c,
twFileManager.h,
twFileTransferCall
backs.c, and
twFileTransferCall
backs.h. For information

Create a File Transfer Event
Handler (Optional) on page
37

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 15

This Directory Contains See Also
about this functionality, refer
to

src/
messaging

The following source and
header files:
• twBaseTypes.c,

twBaseTypes.h
contain the definitions of
the Base Types of the
SDK.

• twInfoTable.c,
twInfoTables.h
contain the definitions of
functions related to
creating an InfoTable with
the SDK.

• twMessages.c,
twMessages.h

• twMessaging.c,
twMessaging.h

twPrimitiveStructure on page
48
Base Types on page 48
twInfoTable on page 50
Handling Offline Messaging
on page 23

src/porting Source and header files that
contain wrappers for OS-
specific functionality
(twLinux.c,
twLinux.h, twLinux-
opensll.h,
twMarvell.c,
twMarvell.h,
twOSPort.c,
twOSPort.h,
twPThreads.c,
twThreads.h,
twTiSimplelink.c,
twTiSimplelink.h,
twWin32Threads.c,
twWindows.c,
twWindows.h,
twWindows-openssl.h)

Porting to Another Platform
on page 67

src/
subscribed
Props

Source and header files
(subscribedProps.c
and

Defining Properties on page
28

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 16

This Directory Contains See Also
subscribedProps.h)
that contain the functionality
to support subscribed
properties.

src/
thirdParty

Third-party libraries for the C
SDK, including ax-TLS,
cJSON, joyent-http-parser,
ntlm, tomcrypt, and wildcard.

For ax-TLS:
TLS Support on page 69
TLS Provider Plugins on page
77

src/tls The files needed to use TLS
with the SDK.

TLS Support on page 69

src/
tunneling

The source
(twTunnelManager.c)
and header
(twTunnelManager.h)
files for the Tunneling
component.

Configuring Application
Tunneling on page 23
Create a Tunnel Event
Handler (Optional) on page
38

src/utils The source and header files
for utilities used by the SDK:
• cryptoWrapper.c,

cryptoWrapper.h

• jsonUtils.c,
jsonUtils.h

• list.c, list.h (for
doubly-linked list utilities

• stringUtils.c,
stringUtils.h

•
• twHttpProxy.c,

twHttpProxy.h

• twLogger.c,
twLogger.h

• twNtlm.c, twNtlm.h

• twTasker.c,
twTasker.h

Configuring the Tasker on
page 22
Connect to the Server and
Initiate Any Defined Tasks on
page 44
Error Codes on page 83

src/
websocket

The source
(twWebsocket.c) and
header (twWebsocket.h)
files for the Websocket Client
(abstraction layer).

Interacting with the
ThingWorx Platform on page
47
Error Codes on page 83

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 17

Getting Started
The best place to start is by examining the examples provided in the tw-c-sdk/
examples directory, compiling and running them. Refer to the document for the
examples, SDK Steam Sensor Example, which is available in the Help
Center, at https://support.ptc.com/appserver/cs/portal/.

ThingWorx Configuration
The SDK requires that a RemoteThing be created in ThingWorx in order to
communicate. Creating a RemoteThing is as simple as creating a Thing with a
ThingTemplate of RemoteThing and optionally an Identifier. If an Identifier is
supplied, the SDK must use the same identifier as well. Without an Identifier, the
RemoteThing is referenced by name. The Identifier may be used if a device has
access to its serial number via firmware, for instance.
If many Things are to be created with the same properties, services, and events, it
is recommended that a ThingTemplate based on the RemoteThing template be
created. It will be much easier to maintain the Things and will require less
memory on the ThingWorx Platform. One way to do this is to create a Thing with
a RemoteThing template and then browse the client application created with the
SDK for its properties, services, and events. Once this work has been completed,
create a template based on this Thing. Then use the template instead of recreating
all the properties, services, and events on each Thing.

Application Development
This section provides an overview of the main steps for developing an application
using the C SDK.

1. Configure the components that your application will use. The components
may include the following:

• Tasker (Configuring the Tasker on page 22)
• File Transfer (Configuring File Transfer on page 23)
• Application Tunneling (Configuring Application Tunneling on page 23)
• Handling of Offline Messages (Handling Offline Messages on page 23)
• Any additional settings (Additional Settings on page 24)

2. If you need to minimize code footprint, follow the instructions in the section,
Minimizing Code Footprint on page 25

3. Define the properties, events, and services that you want to expose to the
server and create the required callback functions. Callback functions can be
created to handle individual properties and services, or a single property or
service callback can be created to handle all of those types of entities. Refer to
the following sections:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 18

https://support.ptc.com/appserver/cs/portal/

• Defining Properties on page 28
• Defining Events on page 33
• Define Property Callback Functions on page 33
• Defining Service Callback Functions on page 35

4. If your application requires, set up the following:

• Tasks — Refer toCreate Your Tasks (Optional) on page 36.
• Bind Event Handler — Refer to Create a Bind Event Handler (Optional)

on page 37.
• Event Handler for File Transfers — Create a File Transfer Event Handler

(Optional) on page 37.
• Event Handler for Tunneling — Create a Tunnel Event Handler (Optional)

on page 38.
• TLS for secure communications — Refer to TLS Support on page 69 and

then to TLS Provider Plugins on page 77.
5. Initialize the API Singleton on page 40.

Note
This initialization function initializes the Subscribed Properties Manager
automatically.

6. Register Properties and Services on page 41.

Register Events on page 42
7. Bind Your Entities on page 42 (Things).
8. If your application requires it, initialize the following components: .

• File Manager — Refer to Initialize the File Manager (Optional) on page
42x.

• Tunnel Manager — Refer to Initialize the Tunnel Manager (Optional) on
page 43.

9. Connect to the Server and Initiate Tasks on page 44.
10. Once your connection is alive and active, any requests made on the server for

registered properties and services are automatically forwarded to your
application, and the appropriate callback function is called. For information
about server-initiated actions and callback functions, refer to Server-Initiated
Interaction on page 53.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 19

Helper functions are available to push properties to the server, execute a
service on another entity in the system, or trigger an event on the server. Refer
to SDK Application-Initiated Interaction on page 57.

11. Build your application. Follow the instructions in Building an Application on
page 63.

If you need to port your application to a platform for which the SDK does not
provide a makefile or solution file, refer to Porting to Another Platform on page
67.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 20

2
Configuring the C SDK

Configuring Components for an Application ...22
Minimizing Code Footprint..25

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 21

Configuring Components for an
Application
Once you have decided which components your application requires, you must
define the components as explained in this section.
Configure the desired components to include and verify that the SDK supports
your platform/OS. If not, refer to the chapters on building (Building an
Application on page 63) and porting (Porting to Another Platform on page 67),
which describe the requirements and process for porting the SDK.
Provided within the SDK examples directory are example applications that
demonstrate various capabilities of the SDK. Within each of those directories are a
win32, osx, and a linux subdirectory, each with their own .sln file or
Makefile, respectively. It is HIGHLY RECOMMENDED that you use one of
these build files as a template or at least gain an understanding of what source
files and configuration settings need to be included in your build environment.
In each of the build directories mentioned, there is a file named
CommonSettings (Linux) or CommonSettings.targets (win32) that
contains the configuration settings for building the SDK for your application. A
full description of each of these settings is provided in this chapter. To change
these settings or use something other than Visual Studio or Make to build the SDK
and your application, edit the src/config/twConfigOverrides.h file to
add your preferred options.

Configuring the Tasker
The built-in tasker is a simple round-robin execution engine that will call all
registered functions at a rate defined when those functions are registered. If using
a multitasking or multi-threaded environment you may want to disable the tasker
and use the native environment. If you choose to disable the tasker, you must call
twApi_TaskerFunction() and twMessageHandler_
msgHandlerTask() on a regular basis (every 5 milliseconds or so). Undefine
this setting if you are using your own threads to drive the API, as you do not want
the tasker running in parallel with another thread running the API.
To properly initialize the Tasker, you must define ENABLE_TASKER:
/*********************************/
/* Tasker Configuration */
/*********************************/
#define ENABLE_TASKER 1

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 22

Configuring File Transfer
The C SDK has full support for all the remote directory/file browsing capabilities
of the ThingWorx platform as well as bidirectional file transfer. To use this
functionality, you must define ENABLE_FILE_XFER. This module will add
~15KB of code space to your application, so severely constrained environments
may want to omit this functionality.
/*********************************/
/* File Transfer Configuration */
/*********************************/
#define ENABLE_FILE_XFER 1

Configuring Application Tunneling
The C SDK has full support for application tunneling. Application tunnels allow
for secure, firewall transparent tunneling of TCP client server applications such as
VNC and SSH. To use this functionality, you must define ENABLE_TUNNELING.
This module will add ~5KB of code space to your application, and upwards of
100KB RAM, depending on usage, so severely constrained environments may
want to omit this functionality.
a/*********************************/
/* Tunneling Configuration */
/*If defined, the tunneling system will be enabled.
*/
#define ENABLE_TUNNELING 1

Handling Offline Messages
The C SDK has multiple options for offline message storage. Offline message
storage will queue up outgoing request messages for later delivery if the network
is down or the duty cycle modulation component of the AlwaysOn protocol
happens to be in the “off” state. If OFFLINE_MSG_STORE is not defined or set
to 0, outbound messages are not queued at all. If OFFLINE_MSG_STORE is set
to 1, messages will be queued up in RAM, up to a limit of OFFLINE_MSG_
QUEUE_SIZE as defined in src/config/twDefaultSettings.h. When
connectivity is re-established, all the messages in this queue will be sent out to the
server.

Note
These messages are in RAM only. If there is a power outage or the system is
shut down for any reason, these messages will be lost and not delivered to the
server.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 23

If OFFLINE_MSG_STORE is set to 2, messages will be persisted to a file in the
directory OFFLINE_MSG_STORE_DIR, which is defined in src/config/
twDefaultSettings.h, up to a limit of OFFLINE_MSG_QUEUE_SIZE. In
both the RAM-based, and file-based offline message stores, when connectivity is
re-established all the messages in this queue will be sent out to the server. Note
that it is quite likely that all of these original messages will time out waiting for a
response from the server, so you will not receive any indication or confirmation
that these messages were successfully processed by the server. Also in either
case, if the total size of the queued messages exceeds the limit defined in
OFFLINE_MSG_QUEUE_SIZE, any subsequent attempt to queue more messages
will fail and those new messages will be lost.
Here is an example of configuring offline message handling:
/*********************************/
/* Offline Message Handling */
/*********************************/
/*
The following settings define how to handle outgoing
Request messages that occur when offline
0 or undefined - Do nothing
1 - store in memory up to a limit of OFFLINE_MSG_QUEUE_SIZE
2 - persist to the directory OFFLINE_MSG_STORE_DIR
*/
#define OFFLINE_MSG_STORE 1

Additional Settings
The C SDK has several settings that you can modify, based on the needs of your
application for things such as minimizing RAM usage or improving performance.
The defaults for these settings are found in the file src/config/
twDefaultSettings.h. In most cases you do not need to change these
settings. If you must change them, exercise caution when making the changes.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 24

With the exception of TW_MAX_TASKS, all of the settings can be modified at
runtime by changing the appropriate setting in the global twcfg structure. The
structure definition can be found in src/config/twDefaultSettings.h.

Note
As of release 1.2 of the C SDK, the default setting for DEFAULT_SOCKET_
READ_TIMEOUT in twDefaultSettings.h is 500 ms. If you are using
AxTLS and a web socket read times out in the middle of reading a record, the
SSL state is lost. As a result, the SDK tries to start read the record header
again, and the operation fails. To detect this situation, check the log for the
SDK for the error, twTlsClient_Read: Timed out after X
milliseconds, and consider increasing the value of the DEFAULT_
SOCKET_READ_TIMEOUT. You can change the setting at runtime by
modifying the value of twcfg.socket_read_timeout.

Minimizing Code Footprint
To attempt to create the smallest possible code footprint, define TW_LEAN_AND_
MEAN. Using TW_LEAN_AND_MEAN disables optional, resource-consuming
entities, such as offline message storage, tunneling, and file transfer. The default
behavior is to remove all logging from the system.
Another way to minimize code footprint is to disable the resource-consuming
entities you do not require.
The following code example shows the definition for TW_LEAN_AND_MEAN:
/*********************************/
/* Minimize Code Footprint */
/*********************************/
/*
Attempts to minimize the code footprint at the
expense of functionality. Check your OS port
header file to see what is disabled.
*/
#define TW_LEAN_AND_MEAN

Tips for Minimizing Footprint and Maximizing Performance
The C SDK has several settings that can significantly impact code footprint and
performance. For performance, key among them is disabling verbose logging
mode. Verbose logging parses every message sent between your application and
the ThingWorx server. While extremely valuable for debugging, it can have a
significant impact on performance. It is recommended that you disable verbose
logging by calling twLogger_SetIsVerbose(FALSE);

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 25

Several areas impact code footprint. Support for connecting through HTTP
Proxies adds ~5KB to your final code size. If not needed, follow this example:
Suppose you are connecting over a cellular connection. To disable the support for
HTTP Proxies, use #undef ENABLE_HTTP_PROXY_SUPPORT.
In addition, support for NTLM proxies adds ~45KB of code. To disable this
support, use #undef USE_NTLM_PROXY.
File Transfer and Tunneling add ~15KB and 5KB respectively. You can disable
them, using #undef ENABLE_FILE_XFER and #undef ENABLE_
TUNNELING.
Finally logging itself adds ~20KB of code. Logging can be disabled with macros
in parts by defining the log functions as empty as follows:
#define TW_LOG(level, fmt, ...)
#define TW_LOG_HEX(msg, preamble, length)
#define TW_LOG_MSG(msg, preamble)

The twWindows.h or twLinux.h files provide examples of using TW_LEAN_
AND_MEAN to minimize the code footprint
.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 26

3
Setting Up an Application

Overview ..28
Defining Properties..28
Defining Events...33
Define Property Callback Functions ..33
Define Service Callback Functions..35
Create Your Tasks (Optional)..36
Creating a Bind Event Handler (Optional) ..37
Create a File Transfer Event Handler (Optional)...37
Create a Tunnel Event Handler (Optional) ...38

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 27

Overview
What do you need to do to set up the application using the C SDK? You must
define the properties and services that you want to expose to the server and create
the required callback functions. Callback functions can be created to handle
individual properties and services or a single property or service callback can be
created to handle all of those types of entities. This decision is left to the
application developer
Optionally, you may need to set up tasks as well as event handlers:
• Bind event handler, so the application can determine which entities are bound

to the ThingWorx Platform),
• File transfer event handler for file transfers to and from the ThingWorx

Platform.
• Tunneling event handler for open and close events.
The C SDK uses a callback mechanism to handle server-initiated requests to read
or write properties and invoke services. The signatures of the callback functions
and the registration functions themselves are found in the file, src/api/
twApi.h.

Defining Properties
In the ThingWorx environment, a property represents a data point, which has a
name, a value, a timestamp, and optionally, a quality. Two types of structures are
used by the SDK to define properties:
• Property Definitions (twPropertyDef) to describe the basic information

for the properties that are going to be available to ThingWorx and can be
added to a client application.

• Property Values (twProperty) to associate the property name with a value,
timestamp, and quality.

The structures are defined in the file, twProperties.h. The functions that
support the creation and deletion of PropertyDef and Property structures are also
defined in this file. The following table lists operations you may want to perform
and the functions to use:
To Use this Function
Create/allocate a Property Definition
structure.

twPropertyDef_Create()

Free all memory associated with a
Property Definition structure and all its
owned substructures.

twPropertyDef_Delete()

Create/allocate a new Property value
structure (name, value, and timestamp).

twProperty_Create()

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 28

To Use this Function
Create/allocate a new Property VTQ
structure (name, Value, Timestamp, and
Quality).

twPropertyVTQ_Create()

Create a new Property VTQ structure
from stream.

twProperty_CreateFromStream()

Free all memory associated with a
Property value structure and all its
owned substructures.

twProperty_Delete()

The following example of a simple property structure from the Steam Sensor
example shows how the declaration of properties works:
/*****************
A simple structure to handle
properties.
******************/
struct {
double TotalFlow;
char FaultStatus;
char InletValve;
double Pressure;
double Temperature;
double TemperatureLimit;
twLocation Location;
char * BigGiantString;
} properties;

To store the values sent by the Platform, you must use a callback method to either
allocate a new variable or set the memory in an already allocated variable. For
information about registering callbacks for properties, refer to Registering
Properties and Services on page 41. For additional information, see also Property
Access Callbacks on page 53 and the sections on reading, writing, and pushing
properties in the section,, SDK Application-Initiated Interaction on page 57.

Property Definitions
The basic information that you provide for a Property Definition includes the
following attributes:

• name — Specifies the name of the property that will appear
in ThingWorx when users browse the related Thing when binding to it.

• description — Provides a description of the property that gives further
understanding of the meaning of the property.

• baseType — Specifies the type of the property. For a list of base types
supported by the SDK, refer to Base Types on page 48.

• aspects — Define the ways to interact with a property. The following list
describes aspects you may want to use:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 29

○ dataChangeType — Describes how the ThingWorx server responds when
the value changes in the client application. Subscriptions to these value
changes can be modeled in the ThingWorx server. If nothing needs to
react to the property change, set this value to NEVER. The possible
values are:
Select To
ALWAYS Always notify of the value change even if the new value is

the same as the last reported value.
VALUE Only notify of a change when a newly reported value is

different than its previous value.
ON For BOOLEAN types, notify only when the value is true.
OFF For BOOLEAN types only, notify when the value is false.
NEVER Ignore all changes to this value.

○ dataChangeThreshold — Defines how much the value must change to
trigger a change event. For example 0 (zero) indicates that any change
triggers an event. A value of 10 (ten) for example would not trigger an
update unless the value changed by an amount greater than or equal to 10.

○ cacheTime — The amount of time that the ThingWorx server caches the
value before reading it again. A value of -1 informs the server that the
client application always sends its value and the server should never go
and get it. A value of 0 (zero) indicates that every time the server uses the
value, it should go and get it from the client application. Any other
positive value indicates that the server caches the value for that many
seconds and then retrieves it from the client application only after that time
expired.

Note
For the client application to set the value every time it changes, set this
value to -1.

○ isPersistsent — Set to TRUE for the ThingWorx server to persist the value
even if it restarts. It is extremely expensive to have persistent values, so it
is recommended to set this value to FALSE unless absolutely necessary.

○ isReadOnly — Set to TRUE to inform the ThingWorx server that this
value is only readable and cannot be changed by a request from the server.

○ pushType — Informs the ThingWorx server how the client application
pushes its values to the server. The possible values are as follows:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 30

Select For the Client to
ALWAYS Send updates even if the value has not changed.
NEVER Never send the value, which indicates

that ThingWorx server only writes to this value.
VALUE Send updates only when the value changes.

○ defaultValue — The default value is the value that the ThingWorx server
uses when the RemoteThing connected to the device first starts up and has
not received an update from the device. The value is different based on the
different value for each base type.

Properties need to be registered so that the ThingWorx server can browse them.
Refer to Registering Properties and Services on page 41.

Property Values
You can define the property value in two ways – one with specific settings for
timestamp and quality and one with the default quality.

Note
Updating a property value does not send the value to the ThingWorx server. To
send the value to the server, the twSubscribedPropsMgr_
PushSubscribedProperties function must be called.

Helper functions for creating property values include:

• setPropertyVTQ— Sets a property’s value using a VTQ (value, time, and
quality) structure.

○ name — The name of the property.
○ value — The VTQ (value, time, and quality) for the property’s value.
○ forceChange — Set this value to true to force the value to be sent to the

ThingWorx server even if it hasn’t changed. This option is a good option
for sending the first value or sending a value immediately after reconnect.

• setPropertyValue — Sets a property’s value using a Primitive type.

○ name — The name of the property.
○ value — The Primitive type for the value.

• setProperty — Sets a property’s value from an object.

○ name — The name of the property.
○ value — The value to set. The value will be cast to the type of property if

possible; otherwise an exception will be thrown.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 31

Subscribed Properties
You can also use a feature called subscribed properties, which has its own
manager (Subscribed Properties Manager). The functions you can use for
subscribed properties are listed in the table below.

Note
The Subscribed Properties Manager is automatically initialized when you call
twAPI_initialize(). You do not need to initialize it separately.

You can set values for each subscribed property individually
(twSetSubscribedPropery) and then push them all at once to the
ThingWorx server. To push subscribed properties, use
twSubscribedPropsMgr_PushSubscribedProperties

To Use
Define subscribed properties The structure,

twSubscribedProperty
Create a subscribed property The function,

twSubscribedProperty_
Create()

Create a subscribed property from a
stream

The function,
twSubscribedProperty_
CreateFromStream()

Delete a subscribed property The function,
twSubscribedProperty_
Delete()

Write a subscribed property to a stream The function,
twSubscribedProperty_
ToStream()

Get the length of a subscribed property The function,
twSubscribedProperty_
GetLength()

Send (“push”) subscribed properties to
the ThingWorx server

The function,
twSubscribedPropsMgr_
PushSubscribedProperties()

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 32

Defining Events
Event definitions describe interrupts that ThingWorx Platform users can subscribe
to if they want to be notified when something happens.
Events require that a data shape for event data be defined in code. Events can be
defined in code or by using the following attributes:

• ThingWorxEventDefinition — Defines the event.
• name — Name of the event.
• description — A description for the event.
• dataShape — The name of the data shape for the event data.
Events must be registered. Refer to Register Events on page 42 for details. The
registered event is reported back to the server when it is browsing. Note that
Events do not have callbacks since they cannot be invoked from the ThingWorx
Platform to the Edge. You can add aspects to an Event that is already registered,
using twApi_AddAspectToService.

Define Property Callback Functions
The property callback function is registered to be called when a request for a
specific property is received from the ThingWorx server; for example, if a service
or a mashup references a property.
typedef enum msgCodeEnum (*property_cb)
(const char * entityName, const char * propertyName,
twInfoTable ** value, char isWrite, void * userdata)

The following parameters are passed to this function:
• entityName— the name of the entity this request is for
• propertyName— the name of the property the request is for
• twInfoTable ** value— a pointer to an twInfoTable that will

contain the new property value if this is a write or will be populated with the
current property value if this is a read. (For information on InfoTables, see the
section,twInfoTable on page 50)

• isWrite— a Boolean indicator saying whether this is a read or a write
• userdata— any user data value that was passed in when the callback was

registered.
The return value of the function should be a message code enumeration as defined
in src/api/twDefinitions.h. These message codes reflect the overall
success or failure of your read or write operation locally. For more information
about the return values, refer to the appendix, Callback Function Return Codes on
page 97.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 33

Example
/*****************
Property Handler Callbacks
******************/
enum msgCodeEnum propertyHandler(const char * entityName,
const char * propertyName, twInfoTable ** value,
char isWrite, void * userdata) {
TW_LOG(TW_TRACE,"propertyHandler - Function called for Entity %s,

Property %s", entityName, propertyName);
if (value) {

if (isWrite && *value) {
/* Property Writes */
if (strcmp(propertyName, "InletValve") == 0)

twInfoTable_GetBoolean(*value, propertyName, 0,
&properties.InletValve);

else if (strcmp(propertyName, "FaultStatus") == 0)
twInfoTable_GetBoolean(*value, propertyName, 0,
&properties.FaultStatus);

else if (strcmp(propertyName, "TemperatureLimit") == 0)
twInfoTable_GetNumber(*value, propertyName,
0, &properties.TemperatureLimit);

else return NOT_FOUND;
return SUCCESS;

} else {
/* Property Reads */
if (strcmp(propertyName, "InletValve") == 0)

*value = twInfoTable_CreateFromBoolean(propertyName,
properties.InletValve);

else if (strcmp(propertyName, "Temperature") == 0)
*value = twInfoTable_CreateFromNumber(propertyName,

properties.Temperature);
else if (strcmp(propertyName, "TemperatureLimit") == 0)

*value = twInfoTable_CreateFromNumber(propertyName,
properties.TemperatureLimit);

else if (strcmp(propertyName, "Location") == 0)
*value = twInfoTable_CreateFromLocation(propertyName,

&properties.Location);
else if (strcmp(propertyName, "BigGiantString") == 0)

*value = twInfoTable_CreateFromString(propertyName,
properties.BigGiantString, TRUE);

else return NOT_FOUND;
}
return SUCCESS;

} else {
TW_LOG(TW_ERROR,"propertyHandler - NULL pointer for value");
return BAD_REQUEST;
}

}

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 34

Define Service Callback Functions
The service callback function is registered to be called when a request for a
specific service is received from the ThingWorx server.
typedef enum msgCodeEnum (*service_cb)
(const char * entityName, const char * serviceName,
twInfoTable * params,twInfoTable ** content, void * userdata)

The following parameters are passed to this callback function:
• entityName— the name of the entity this request is for (Thing, Resource,

for example). Guaranteed to not be NULL.
• serviceName— the name of the service being requested
• twInfoTable *params— a pointer to an twInfoTable that contains

all the parameters for the service. May be NULL if service has no parameters.
(For information on InfoTables, see the section,twInfoTable on page 50)

• twInfoTable ** content— a pointer to a pointer to a twInfoTable.
content is guaranteed to not be NULL. *content is not.

Note
A new instance of a twInfoTable should be created on the heap and a
pointer to it returned.

• userdata— any user data value that was passed in when the callback was
registered.

The return value of the function is TWX_SUCCESS if the request completes
successfully or an appropriate error code if not (should be a message code
enumeration as defined in twDefinitions.h).

Example
Here is an example of hanadling a single service in a callback:
/*****************
Service Callbacks
******************/
/* Example of handling a single service in a callback */
enum msgCodeEnum addNumbersService(const char * entityName,
const char * serviceName, twInfoTable * params,
twInfoTable ** content, void * userdata) {

double a, b, res;
TW_LOG(TW_TRACE,"addNumbersService - Function called");
if (!params || !content) {

TW_LOG(TW_ERROR,"addNumbersService -
NULL params or content pointer");

return BAD_REQUEST;
}

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 35

twInfoTable_GetNumber(params, "a", 0, &a);
twInfoTable_GetNumber(params, "b", 0, &b);
res = a + b;
*content = twInfoTable_CreateFromNumber("result", res);
if (*content) return SUCCESS;
else return INTERNAL_SERVER_ERROR;

}

Create Your Tasks (Optional)
If using the built-in tasker to drive data collection or other types of repetitive or
periodic activities, create a function for the task. Task functions are registered with
the Tasker and then called at the rate specified after they are registered. The
Tasker is a very simple, cooperative multitasker, so these functions should not take
long to return and most certainly must not go into an infinite loop.
The signature for a task function is found in src/utils/twTasker.h. The
function is passed a DATETIME value with the current time and a void pointer
that is passed into the Tasker when the task is registered.
Here is an example of a data collection task:
/***************
Data Collection Task
****************/
/*
This function gets called at the rate defined in the task creation.
The SDK has a simple cooperative multitasker, so the function
cannot infinitely loop.
Use of a task like this is optional and not required in a multithreaded
environment where this functionality could be provided in a separate thread.
*/
#define DATA_COLLECTION_RATE_MSEC 2000
void dataCollectionTask(DATETIME now, void * params) {
/* TW_LOG(TW_TRACE,"dataCollectionTask: Executing"); */

properties.TotalFlow = rand()/(RAND_MAX/10.0);
properties.Pressure = 18 + rand()/(RAND_MAX/5.0);
properties.Location.latitude = properties.Location.latitude +

((double)(rand() - RAND_MAX))/RAND_MAX/5;
properties.Location.longitude = properties.Location.longitude +

((double)(rand() - RAND_MAX))/RAND_MAX/5;
properties.Temperature = 400 + rand()/(RAND_MAX/40);
/* Check for a fault. Only do something if we haven't already */
if (properties.Temperature > properties.TemperatureLimit &&

properties.FaultStatus == FALSE) {
twInfoTable * faultData = 0;
char msg[140];
properties.FaultStatus = TRUE;
properties.InletValve = TRUE;
sprintf(msg,"%s Temperature %2f exceeds threshold of %2f",

thingName, properties.Temperature,
properties.TemperatureLimit);

faultData = twInfoTable_CreateFromString("msg", msg, TRUE);
twApi_FireEvent(TW_THING, thingName,

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 36

"SteamSensorFault", faultData, -1, TRUE);
twInfoTable_Delete(faultData);

}
/* Update the properties on the server */
sendPropertyUpdate();

}

Creating a Bind Event Handler (Optional)
You may want to track exactly when your edge entities are successfully bound to
or unbound from the server. The reason for this is that only bound items should
be interacting with the ThingWorx Platform and the ThingWorx Platform will
never send any requests targeted at an entity that is not bound.
/* Register a bind event handler */
/* Callbacks only when thingName is bound/unbound */

twApi_RegisterBindEventCallback(thingName, BindEventHandler, NULL);

/* First NULL says "tell me about all things that are bound */

/* twApi_RegisterBindEventCallback(NULL, BindEventHandler, NULL

Create a File Transfer Event Handler
(Optional)
If you are using the File Transfer capability of the C SDK, you may want to create
an event handler for any file transfer events. This handler will be called whenever
a new file is successfully sent from the server to your application, and when an
asynchronous file transfer from your device to the service has completed either
successfully or unsuccessfully.
The signature for a file transfer event callback is as follows:
typedef void (*file_cb) (char fileRcvd, twFileTransferInfo * info);

The input parameters for this callback function are as follows:
• fileRcvd— a Boolean. TRUE is the file was received, FALSE if it was

being sent
• info— a pointer to the file transfer info structure. The called function retains

ownership of this pointer and must delete it with twFileTransferInfo_
Delete() when it has finished using it

Return:
• None
The structure definition of twFileTransferInfo can be found in the file
src/fileTransfer/twFileManager.h.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 37

Create a Tunnel Event Handler (Optional)
If you are using the Tunneling capability of the C SDK, you may want to create an
event handler for any tunneling events. This handler will be called whenever a
new tunnel is established or when a tunnel closes. The twTunnelManager also
provides functions to list active tunnels as well as to force a shutdown of an active
tunnel.
The signature for a tunnel event callback is as follows:
typedef void (*tunnel_cb) (char started, const char * tid,
const char * thingName, const char * peerName,
const char * host, int16_t port, DATETIME startTime,
DATETIME endTime, uint64_t bytesSent, uint64_t bytesRcvd,

const char * type, const char * msg, void * userdata);

The Input parameters for this callback function are as follows:
• started— Boolean. TRUE is the tunnel is started, FALSE if tunnel has

ended.
• tid— the unique id of the tunnel
• thingName— the name of the thing this tunnel is targeted at
• peerName— the name of the peer user of the tunnel
• host— the hostname of the local connection that is tunneled to
• port— the port number of the local connection that is tunneled to
• startTime— the time the tunnel started (0 if it never started)
• endTime— the time the tunnel ended (0 if it hasn't ended yet)
• bytesSent— the total number of bytes that were sent to the peer
• bytesRcvd— the total number of bytes that were received from the peer
• type— the type of the tunnel (tcp, udp, or serial)
• userdata— an opaque pointer that was passed in during registration
Return:
• None
The definition of the twTunnelManager singleton’s functions can be found in
the file src/tunneling/twTunnelManager.h.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 38

4
Running the C SDK

Initializing the API Singleton ...40
Registering Properties and Services ...41
Registering Events ..42
Binding Your Entities..42
Initializing the File Manager (Optional) ..42
Initializing the Tunnel Manager (Optional)..43
Creating a Bind Event Handler (Optional) ..44
Connect to the Server and Initiate any Defined Tasks ...44

After developing the callback handler functions, it is now time to do something
with them. Continue here to learn what you should typically do in your ‘main’
function (or in a function called by main).

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 39

Initializing the API Singleton
Initializing the API singleton configures the connection to the server, but does
NOT establish the connection. Typically, only the Host and the apiKey need to be
modified, all other defaults can be used. For security purposes, the API defaults to
rejecting self-signed certificates. If you choose to override this behavior, you can
tell the API to allow them.
To initialize the API:
/* Initialize the API */
api = twApi_Initialize("localhost", 443,

TW_URI, "1724be81-fa15-4485-a966-287bf8f6683c",
NULL, MESSAGE_CHUNK_SIZE, MESSAGE_CHUNK_SIZE, TRUE);

The signature for this function and definitions of its parameters can be found in
the file, twApi.h.

Note
This function initializes the Subscribed Properties Manager. You do not need
to initialize this manager separately.

By default the API is set up to ensure the most secure connection possible. For the
most secure connection, set the issuer and subject fields of your server
certificates before starting the connection by using the twApi_
SetX509Fields() function. These settings mean that it will attempt to
validate certificates and reject self-signed certificates. Many settings are available
to modify the default behavior and may provide some level of convenience during
development, such as allowing self-signed certificates. However, modifying from
the most secure settings possible for production is NOT recommended. These
functions can be found in the file, twApi.h, and are as follows:
int twApi_SetProxyInfo(char * proxyHost, uint16_t proxyPort,
char * proxyUser, char * proxyPass);

void twApi_SetSelfSignedOk();
int twApi_EnableFipsMode();
void twApi_DisableCertValidation();
void twApi_DisableEncryption();
int twApi_SetX509Fields(char * subject_cn,
char * subject_o, char * subject_ou, char * issuer_cn,
char * issuer_o, char * issuer_ou);

int twApi_LoadCACert(const char *file, int type);
int twApi_LoadClientCert(char *file);
int twApi_SetClientKey(const char *file, char * passphrase, int type);

Your application can use an embedded FIPS-140-2-validated cryptographic
module (Certificate #1747; OpenSSL FIPS module version 2.0.2) running on all
supported platforms per FIPS 140-2 Implementation Guidance section G.5
guidelines. The C SDK uses the OpenSSL toolkit in conjunction with the
OpenSSL FIPS Object Module 2.0.2. .

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 40

Note
Not all hardware platforms where applications written using the C SDK can run
support FIPS-140-2-validated cryptography. For example, on platforms based on
IA32 architecture, the processor must support the SSE2 instruction set. The SSE2
instruction set is available in Intel x86 CPUs, starting with Pentium 4. The
application log will have a message that FIPS-140-2-validated cryptography is
enabled. If you enable it, be sure that your certificates include only FIPS approved
encryption algorithms. The FIPS approved algorithms are AES, Triple-DES, RSA,
DSA, DH, SHA1, and SHA2.

If the FIPS module is enabled and the application directly communicates with a
Java-based SSL/TLS server (such as the ThingWorx Platform), the cipher suite list
should include !kEDH (as shown below). Otherwise, ephemeral Diffie-Hellman
(EDH) key exchange may fail:
<CipherSuites>DEFAULT:!kEDH</CipherSuites>

Registering Properties and Services
Registering properties and services with the API accomplishes two things:

1. Tells the API what callback function to invoke when a request for that
property or service comes in froRegistreing Properties and Servicesm the
server.

2. Gives the API information about the property or service so that when the
ThingWorx Composer browses the Edge device, it can be informed about the
availability and the definition of that property or service.

To register services and properties, follow these examples:
/* Register our services */
ds = twDataShape_Create(twDataShapeEntry_Create("a",NULL,TW_NUMBER));
twDataShape_AddEntry(ds, twDataShapeEntry_Create("b",NULL,TW_NUMBER));
twApi_RegisterService(TW_THING, thingName,

"AddNumbers", NULL, ds, TW_NUMBER, NULL, addNumbersService, NULL);

/* Register our properties */
twApi_RegisterProperty(TW_THING, thingName,

"InletValve", TW_BOOLEAN, NULL, "ALWAYS", 0, propertyHandler, NULL);
twApi_RegisterProperty(TW_THING, thingName,

"Pressure", TW_NUMBER, NULL, "ALWAYS", 0, propertyHandler, NULL);
twApi_RegisterProperty(TW_THING, thingName,

"BigGiantString", TW_STRING, NULL, "ALWAYS", 0, propertyHandler, NULL);

For more information about using the callbacks, refer to the section, Server-
Initiated Interactions on page 53.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 41

Registering Events
Events do not have callbacks because they cannot be invoked from the ThingWorx
Platform as a request to the edge device running your application. For your
application to report events back to the ThingWorx Platform, use the twApi_
RegisterEvent function to register the events. For more information about the
function, refer to the Doxygen documentation that accompanies the C SDK.

Binding Your Entities
Bind each entity (Thing) so that when the API connects (and reconnects) to the
server, it will announce that your entity is connected and available for interaction.
The API can be used as a gateway, where multiple entities can be bound at the
same time. In addition, the API supports unbinding entities so transient “Things”
are supported.
To bind an entity, use its thingName, as shown here:
/* Bind our thing */
twApi_BindThing(thingName);

Initializing the File Manager (Optional)
If using the directory browsing and file transfer capability of the SDK, perform
the following steps:

1. Set the staging directory — You must set the staging directory before
initializing the FileManager. The default directory of the FileManager is most
likely owned by root and will require a change to either the location of the
staging directory and the ownership of the staging directory, or running the
application as a user with the correct permissions.

2. Initialize the FileManager singleton.
3. Define any virtual directories — Virtual directories allow you to expose only a

subset of the device’s entire file system to the server for browsing and file
transfer. This restriction is for both performance and security reasons.

Registering a virtual directory with the FileManager consists of mapping a
unique name to an absolute path of a directory in your file system. Note that
all subdirectories of the specified directory in the file system will be exposed
to the server. Multiple virtual directories can be defined and there is no
requirement that they be contiguous.

4. Register the FileCallback function that was previously defined so that the
FileManager will call that function when any file transfer events occur. You
can provide a wildcard filter so that only file transfer events of files that match
the filter call the callback function. In addition, callbacks can be set up as

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 42

“one-shots” such that the callback is unregistered automatically after it is
invoked the first time

Here are examples for each of these steps:
/* Staging Directory Variable */, must be set before initializing file manager
twcfg.file_xfer_staging_dir=”/home/user/stagingdir”;

/* Initialize the FileTransfer Manager */
twFileManager_Create();

/* Create our virtual directories */
twFileManager_AddVirtualDir(thingName, "tw", "/opt/thingworx");
twFileManager_AddVirtualDir(thingName, "tw2", "/twFile_tmp");

/* Register the file transfer callback function */
twFileManager_RegisterFileCallback(fileCallbackFunc, NULL, FALSE, NULL);

Initializing the Tunnel Manager (Optional)
If using the tunneling capability of the C SDK you must create #define
ENABLE_TUNNELING. A tunnel manager singleton is automatically created for
you when you initialize the API. If you wish to disable tunneling for any reason
you may call twTunnelManager_Delete(). The tunnel manager may be
started up again by calling twTunnelManager_Create(). Once the tunnel
manager is running you may register any callback functions. Passing a NULL for
the id parameter when registering a callback will result in callbacks for all tunnel
events.
/* Register the tunnel callback function */
twTunnelManager_RegisterTunnelCallback(tunnelCallbackFunc, NULL, NULL);

When new tunnels are requested by the server, the tunnel manager creates a new
tunnel. These tunnels establish an independent websocket back to the server. By
default these websockets connect back to the same host/port that the API’s
websocket uses as well as the same TLS certificate validation criteria. You can
override these defaults by using the built-in tunnel manager functions as found in
the file, twTunnelManager.h:
int twTunnelManager_UpdateTunnelServerInfo(char * host,

uint16_t port, char * appkey);
void twTunnelManager_SetProxyInfo(char * proxyHost, uint16_t proxyPort,

char * proxyUser, char * proxyPass);
void twTunnelManager_SetSelfSignedOk(char state);
void twTunnelManager_EnableFipsMode(char state);
void twTunnelManager_DisableCertValidation(char state);
void twTunnelManager_DisableEncryption(char state);
void twTunnelManager_SetX509Fields(char * subject_cn, char * subject_o,

char * subject_ou, char * issuer_cn,
char * issuer_o, char * issuer_ou);

void twTunnelManager_LoadCACert(const char *file, int type);
void twTunnelManager_LoadClientCert(char *file);
void twTunnelManager_SetClientKey(const char *file, char * passphrase, int type);

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 43

Note
If you are not using the built-in tasker, you must call the function
twTunnelManager_TaskerFunction on a very frequent basis (every 5
msec or so).

Creating a Bind Event Handler (Optional)
You may want to track exactly when your edge entities are successfully bound to
or unbound from the server. The reason for this is that only bound items should
be interacting with the ThingWorx Platform and the ThingWorx Platform will
never send any requests targeted at an entity that is not bound.
/* Register a bind event handler */
/* Callbacks only when thingName is bound/unbound */

twApi_RegisterBindEventCallback(thingName, BindEventHandler, NULL);

/* First NULL says "tell me about all things that are bound */

/* twApi_RegisterBindEventCallback(NULL, BindEventHandler, NULL

Connect to the Server and Initiate any
Defined Tasks
Connecting to the server first and then initiating tasks is the preferable order,
especially if your tasks will be pushing data to the server. If you start the tasks
earlier, they may attempt to send property updates or invoke services on the server
before the connection has been established. While reversing the order will not
cause any lasting problems, it will tend to keep the system very busy with retries
before the connection is established.
The connection to the server will be attempted and retried with the parameters
specified to the twApi_Connect() function. By default, the API will
automatically reconnect using the same parameters if the connection is
subsequently lost. This behavior can be overridden when the API is initialized by
setting the autoreconnect parameter to FALSE.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 44

Note
As of release 1.2 of the C SDK, the default setting for DEFAULT_SOCKET_
READ_TIMEOUT in twDefaultSettings.h is 500 ms. If you are using
AxTLS and a web socket read times out in the middle of reading a record, the
SSL state is lost. As a result, the SDK tries to start read the record header
again, and the operation fails. To detect this situation, check the log for the
SDK for the error, twTlsClient_Read: Timed out after X
milliseconds, and consider increasing the value of the DEFAULT_
SOCKET_READ_TIMEOUT. You can change the setting at runtime by
modifying the value of twcfg.socket_read_timeout.

In release 1.2, the inputs to the twApi_Connect() function calls were
changed in the main.c source for the Steam Sensor example files. The retries
parameter was changed from CONNECT_RETRIES to the globally defined
twcfg.connect_retries.

The API also supports callback notifications when a connection is successfully
made and when a connection is lost. The signature for “event callback” functions
can be found in the file, src/messaging/twMessaging.h, and the task
registration functions are found in the file, twApi.h.
/* Connect to server */
if (!twApi_Connect(CONNECT_TIMEOUT, twcfg.connect_retries)) {
/* Register our "Data collection Task" with the tasker */
twApi_CreateTask(DATA_COLLECTION_RATE_MSEC, dataCollectionTask);
}

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 45

5
Interacting with the ThingWorx

Platform
Basic Data Structures ..48
Server-Initiated Interaction ...53
SDK Application-Initiated Interaction ...57

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 47

Basic Data Structures
Once your connection is alive and active, any requests made to the server for
registered properties and services will automatically be forwarded to your
application, and the appropriate callback function will be called. To push
properties to the server, execute a service on another entity in the system, or
trigger an event on the server. Helper functions are available for these actions.
These functions are described in the section, SDK Application-Initiated
Interaction on page 57.
Data in the C SDK are represented in the form of a twPrimitive structure.
Collections of data values are represented in the form of a twInfoTable
structure. Each of these structures is defined below and the API functions to
access them are found in src/messaging/twBaseTypes.h and
twInfoTable.h, respectively.

twPrimitiveStructure
The twPrimitiveStructure is a form of a variant that can represent any of the base
types supported in the ThingWorx platform. The structure is defined in src/
messaging/twBaseTypes.h as follows:
typedef struct twPrimitive {
enum BaseType type;
enum BaseType typeFamily;
uint32_t length;
union {

int32_t integer;
double number;
DATETIME datetime;
twLocation location;
char boolean;
struct {

char * data;
uint32_t len;

} bytes;
struct twInfoTable * infotable;
struct twPrimitive * variant;

} val;
} twPrimitive;

The key fields are the type enumeration and the val union. The fields
typeFamily and length are for internal API use and are typically not used by
an application.

Base Types
The supported base types are defined in src/api/twDefinitions.h and
consist of the following:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 48

Base Types

Base Type Description
TW_NOTHING An empty val.
TW_STRING A modified UTF8 encoded string. Data

and length are stored in val.bytes
and val.len, respectively. The
twPrimitive owns the data pointer
and will free it when deleted. TW_
STRING types are null terminated.

TW_NUMBER A C double value, stored in
val.double.

TW_BOOLEAN Represented as a single char, stored in
val.boolean.

TW_DATETIME A DATETIME value, which is an
unsigned 64 bit value representing
milliseconds since the epoch 1/1/1970.
Data is stored in val.datetime.

TW_INFOTABLE A pointer to a complex structure
(defined in the next section) and stored
in val.infotable. The
twPrimitive owns this pointer and
will free up the memory pointed to
when the twPrimitive is deleted.

TW_LOCATION A structure consisting of three double
floating point values – longitude,
latitude, and elevation. Stored as
val.location.

TW_BLOB A pointer to a character array. Data and
length are stored in val.bytes and
val.len, respectively. Differs from
TW_STRING in that the array may
contain nulls. The twPrimitive
owns the data pointer and will free it
when deleted.

TW_IMAGE Identical to TW_BLOB except for the
type difference.

TW_INTEGER Assigned 4 by integral value. Stored as
val.integer.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 49

Base Types (continued)

Base Type Description
TW_VARIANT Pointer to a structure that contain a

type enum and a twPrimitive
value. The pointer is stored as
val.variant. The twPrimitive
owns the pointer and will free the
structure when deleted.

TW_XML,TW_JSON, TW_QUERY,
TW_HYPERLINK, TW_IMAGELINK,
TW_PASSWORD, TW_HTML, TW_
TEXT, TW_TAGS, TW_GUID,TW_
THINGNAME, TW_
THINGSHAPENAME, TW_
THINGTEMPLATENAME, TW_
DATASHAPENAME, TW_
MASHUPNAME, TW_MENUNAME,
TW_BASETYPENAME, TW_
USERNAME, TW_GROUPNAME, TW_
CATEGORYNAME, TW_
STATEDEFINITIONNAME, TW_
STYLEDEFINITIONNAME, TW_
MODELTAGVOCABULARYNAME, TW_
DATATAGVOCABULARYNAME, TW_
NETWORKNAME, TW_
MEDIAENTITYNAME, TW_
APPLICATIONKEYNAME, TW_
LOCALIZATIONTABLENAME, TW_
ORGANIZATIONNAME

These base types are all of the TW_
STRING family and are stored
similarly.

There are many helper functions for creating twPrimitive structures from base
types so that you will rarely have to create one manually. These function
definitions can be found in src/messaging/twBaseTypes.h.

twInfoTable
The twInfoTable (InfoTable) is the primary mechanism for sending data to
and from the ThingWorx server. Infotables are essentially self-describing
collections of twPrimitive values.

Structure of an InfoTable
The structure of an InfoTable is as follows:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 50

typedef struct twInfoTable {
twDataShape * ds;
twList * rows;
uint32_t length;
TW_MUTEX mtx;

} twInfoTable;

The ds element is a pointer to a twDatashape structure that describes what
each field (column) of the table is – its name, description, and the base type of that
field. The base type of a field can be any one of the base types described in the
table above, including an InfoTable, as the SDK and platform allow nesting of
InfoTables.
The rows element is a pointer to a list of values. Each entry in the list is a pointer
to a twInfoTableRow structure. The twInfoTableRow structure contains
values for each of the fields described in the datashape and must contain the
values in the same order as in the datashape. The number of rows in an InfoTable
is a 32-bit value and therefore only practically limited to how much memory you
wish to allow the InfoTable to consume.
The length and mtx elements of the twInfoTable structure are for internal
use and are typically not accessed directly. All the pointer elements of an
InfoTable are owned and managed by the InfoTable and should not be deleted or
freed on their own.

Creating an InfoTable
Creating an InfoTable is a three step process, as follows:

1. Create your datashape and add any necessary entries (fields) to the datashape.
twDataShapeEntry * twDataShapeEntry_Create(const char * name,

const char description, enum BaseType type);

twDataShape * twDataShape_Create(twDataShapeEntry * firstEntry);

int twDataShape_AddEntry(struct twDataShape * ds,
struct twDataShapeEntry * entry);

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 51

Caution
You must create a datashape to hold the schema for the InfoTable
BEFORE creating an InfoTable. Once the InfoTable is created, data is
added one row at a time. When a row is created, data must be added to the
row in the same order that it is in datashape. If the data is not added in the
correct order, the InfoTable will not form correctly. There is no warning
about this, and it will only be clear after the fact that the data is being
added incorrectly (when you try to view it on the ThingWorx Platform).

2. Create the InfoTable, which requires the datashape of the InfoTable to be
passed in as a parameter.
twInfoTable * twInfoTable_Create(twDataShape * shape)

3. Add data to the InfoTable by individually creating the rows and adding them
to the InfoTable.
twInfoTableRow * twInfoTableRow_Create(twPrimitive * firstEntry)

int twInfoTableRow_AddEntry(twInfoTableRow * row, twPrimitive * entry)

int twInfoTable_AddRow(twInfoTable * it, twInfoTableRow * row)

Helper Functions for InfoTables
One very common pattern for InfoTables is an InfoTable that contains a single
field and a single row, for example the current value of a single property. The API
provides several helper functions that make it easy to create such InfoTables using
just a single function call.
twInfoTable * twInfoTable_CreateFromString(const char * name, char * value,

char duplicate);
twInfoTable * twInfoTable_CreateFromNumber(const char * name, double value);
twInfoTable * twInfoTable_CreateFromInteger(const char * name, int32_t value);
twInfoTable * twInfoTable_CreateFromLocation(const char * name, twLocation * value);
twInfoTable * twInfoTable_CreateFromDatetime(const char * name, DATETIME value);
twInfoTable * twInfoTable_CreateFromBoolean(const char * name, char value);
twInfoTable * twInfoTable_CreateFromPrimitive(const char * name, twPrimitive * value);
twInfoTable * twInfoTable_CreateFromBlob(const char * name, char * value,

int32_t length, char isImage, char duplicate);

Accessing data contained in an InfoTable is also easy with several helper
functions defined to assist with the common usage patterns. You simply pass in
the name of the field and which row you wish to retrieve the value from.
int twInfoTable_GetString(twInfoTable * it, const char * name,

int32_t row, char ** value);
int twInfoTable_GetNumber(twInfoTable * it, const char * name,

int32_t row, double * value);
int twInfoTable_GetInteger(twInfoTable * it, const char * name,

int32_t row,int32_t * value);

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 52

int twInfoTable_GetLocation(twInfoTable * it, const char * name,
int32_t row, twLocation * value);

int twInfoTable_GetBlob(twInfoTable * it, const char * name,
int32_t row, char ** value, int32_t * length);

int twInfoTable_GetDatetime(twInfoTable * it, const char * name,
int32_t row, DATETIME * value);

int twInfoTable_GetBoolean(twInfoTable * it, const char * name,
int32_t row, char * value);

int twInfoTable_GetPrimitive(twInfoTable * it, const char * name,
int32_t row, twPrimitive ** value);

Server-Initiated Interaction
To respond to requests for properties and services from the server, the API
provides the property access and service access callbacks. The next two sections
describe these callbacks, their parameters, and return values, and provide
examples of using these callbacks.

Property Access Callbacks
Property access callbacks are the functions that are called when a request comes
from the server to either read or write a specific property. These functions have the
following signature:
enum msgCodeEnum myPropCallback (

const char * entityName,
const char * propertyName,
twInfoTable ** value,
char isWrite,
void * userdata

)

The following table lists and describes the parameters:

Parameter Type Description
entityName Input Pointer to a character array. The name is

represented as a modified UTF-8 string
with the name of the entity targeted in this
request. This parameter is guaranteed not
to be null.

propertyName Input Pointer to a character array. This is the
name of the property, represented in
modified UTF-8. This value may be null
or ‘*” which means the request is to return
the value of all properties registered for this
entity.

value Input/Output Pointer to a pointer to a twInfoTable.
If this is a request to read the value of a

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 53

Parameter Type Description
property a new twInfoTable structure
should be created and it pointer should
assigned to value. If this is a write, the
value will contain a pointer to the infotable
that contains the data to be written. This
pointer is guaranteed to be non-NULL. In
either case, the calling function will assume
ownership of the pointer in *value, so the
callback function does not need to worry
about memory management of any
infotables passed in or created and returned
as values.

isWrite Input A Boolean value describing whether this is
a read (FALSE) or write (TRUE) request
for the property.

userdata Input The same pointer value that was passed in
when this property was registered. This
pointer can be used for anything. A typical
use is to specify the this pointer when
using C++ class wrappers.

The return value of the callback is an indicator of the success or failure of the
function. You are free to choose any of the return codes defined in the
msgCodeEnum enumeration type, defined in src/api/twDefinitions.h,
starting with SUCCESS or any applicable larger value.
Below is a simple example of a property handler callback function.
enum msgCodeEnum propertyHandler(const char * entityName,

const char * propertyName,
twInfoTable ** value,
char isWrite,

void * userdata) {
char * asterisk = “*”;

if (!propertyName) propertyName = asterisk;
TW_LOG(TW_TRACE,"propertyHandler - Function called for Entity %s,

Property %s", entityName, propertyName);
if (value) {

if (isWrite && *value) {
/* Property Writes */
if (strcmp(propertyName, "TemperatureLimit") == 0) {

twInfoTable_GetNumber(*value, propertyName, 0,
&properties.TemperatureLimit);

} else return NOT_FOUND;
return SUCCESS;

} else {
/* Property Reads */
if (strcmp(propertyName, "TemperatureLimit") == 0)

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 54

{*value = twInfoTable_CreateFromNumber(propertyName,
properties.TemperatureLimit);

} else return NOT_FOUND;
}
return SUCCESS;

} else {
TW_LOG(TW_ERROR,"propertyHandler - NULL pointer for value");
return BAD_REQUEST;

}
}

Service Callbacks
Service callbacks are the functions that are called when a request comes from the
ThingWorx Platform to execute a service on a particular entity. These functions
have the following signature:
typedef enum msgCodeEnum (*service_cb) (

const char * entityName,
const char * serviceName,
twInfoTable * params,
twInfoTable ** content);

The following table defines the parameters:

Parameters for msgCodeEnum()

Parameter Type Description
entityName Input Pointer to a character array. The name is

represented as a modified UTF-8 string
with the name of the entity targeted in this
request. This parameter is guaranteed not
to be NULL.

serviceName Input Pointer to a character array. This is the
name of the service to be executed,
represented in modified UTF-8. This
parameter is guaranteed not to be NULL.

params Input Pointer to a twInfoTable. This is a
pointer to an infotable that contains all of
the parameters specified for this invocation
of the service. This pointer may be NULL
if the service in question has no input
parameters. The API owns this pointer and
will manage any memory associated with
it.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 55

Parameters for msgCodeEnum() (continued)

Parameter Type Description
content Output Pointer to a pointer to a twInfoTable. This

is used to return any data the service
returns back to the server. The callback
function should create a twInfoTable as
described previously and pass a pointer to
that structure to *content. If the service
does not return any data it is OK to set
*content to NULL. The API will assume
ownership of the pointer in *value, so the
callback function does not need to worry
about memory management of any
infotables passed in or created and returned
as values.

userdata Input The same pointer value that was passed in
when this property was registered. This
pointer can be used for anything, a typical
use is to specify the ‘this’ pointer when
using C++ class wrappers.

The return value of the callback is an indicator of the success or failure of the
service call. You are free to choose any of the return codes defined in the
msgCodeEnum enumeration type, defined in src/api/twDefinitions.h,
starting with SUCCESS or any applicable larger value. Here is an example of a
service handler callback:
enum msgCodeEnum addNumbersService(const char * entityName,

const char * serviceName,
twInfoTable * params,

twInfoTable ** content,
void * userdata) {

double a, b, res;
TW_LOG(TW_TRACE,"addNumbersService - Function called");
if (!params || !content) {

TW_LOG(TW_ERROR,"addNumbersService - NULL params or content pointer");
return BAD_REQUEST;

}
if (twInfoTable_GetNumber(params, "a", 0, &a) ||

twInfoTable_GetNumber(params, "b", 0, &b)) {
TW_LOG(TW_ERROR,"addNumbersService – Missing parameter data");
return BAD_REQUEST;

}
res = a + b;
*content = twInfoTable_CreateFromNumber("result", res);
if (*content) return SUCCESS;
else return INTERNAL_SERVER_ERROR;

}

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 56

SDK Application-Initiated Interaction
The SDK provides functions to make it easy for an application to initiate
interaction with the ThingWorx Platform. Assuming all the proper visibility,
permissions, and other security aspects are correct, an entity built using the C
SDK can read or write properties, create a list of subscribed properties, set values
of subscribed properties, invoke services, and trigger events on itself or other
entities in the system. The following sections describe the helper functions

Read a Property
This helper function retrieves the current value of a property of a specific entity on
the ThingWorx Platform.
enum msgCodeEnum twApi_ReadProperty(enum entityTypeEnum entityType,

char * entityName, char * propertyName,
twPrimitive ** result, int32_t timeout,
char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the property belongs

to. Enumeration values can be found
in twDefinitions.h

entityName Input The name of the entity that the property
belongs to.

propertyName Input The name of the property to retrieve.
result Input/Ouput A pointer to a twPrimitive pointer. In

a successful request, this parameter will
end up with a valid pointer to a
twPrimitive value. The caller is
responsible for deleting the returned
primitive using twPrimitive_
Delete. It is possible for the returned
pointer be a NULL if an error occurred.

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h

forceConnect Input A Boolean value. If TRUE and the API is
in the disconnected state of the duty cycle,
the API will force a reconnect to send the
request.

Return:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 57

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Write a Property
This helper function writes a new value for a property of a specific entity on the
ThingWorx Platform.
enum msgCodeEnum twApi_WriteProperty(enum entityTypeEnum entityType,
char * entityName, char * propertyName,
twPrimitive * value, int32_t timeout, char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the property belongs

to. Enumeration values can be found
in twDefinitions.h.

entityName Input The name of the entity that the property
belongs to.

propertyName Input The name of the property to retrieve.
value Input A pointer to a twPrimitive that

contains the value to set for the property.
Once called, the calling function will retain
ownership of this pointer and must manage
the memory lifecycle. NOTE: The called
function WILL alter the contents of this
primitive, so the original contents cannot
be relied upon after the function returns..

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is
in the disconnected state of the duty cycle,
the API will force a reconnect to send the
request.

Return:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 58

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Push Properties
Use this function to update one or more properties with a single message to the
ThingWorx Platform. You can also use it to send multiple values of the same
property to the ThingWorx Platform in a single message.
enum msgCodeEnum twApi_PushProperties(enum entityTypeEnum entityType,
char * entityName, propertyList * properties, int32_t timeout,

char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the properties

belong to. Enumeration values can be
found in the file, twDefinitions.h

entityName Input The name of the entity that the properties
belong to.

properties Input A pointer to a list of twPrimitives.
The calling function will retain ownership
of this pointer and is responsible for
cleaning up the memory after the call is
complete.

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h

forceConnect Input A Boolean value. If TRUE and the API is
in the disconnected state of the duty cycle,
the API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

An example usage of the twApi_PushProperties function is as follows:
void sendPropertyUpdate() {propertyList * proplist =

twApi_CreatePropertyList("FaultStatus",
twPrimitive_CreateFromBoolean(properties.FaultStatus), 0);

if (!proplist) {
TW_LOG(TW_ERROR,"sendPropertyUpdate: Error allocating property list");
return;

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 59

}
twApi_AddPropertyToList(proplist,"InletValve",

twPrimitive_CreateFromBoolean(properties.InletValve), 0);
twApi_AddPropertyToList(proplist,"Temperature",

twPrimitive_CreateFromNumber(properties.Temperature), 0);
twApi_AddPropertyToList(proplist,"TotalFlow",

twPrimitive_CreateFromNumber(properties.TotalFlow), 0);
twApi_AddPropertyToList(proplist,"Pressure",

twPrimitive_CreateFromNumber(properties.Pressure), 0);
twApi_AddPropertyToList(proplist,"Location",

twPrimitive_CreateFromLocation(&properties.Location), 0);
twApi_PushProperties(TW_THING, thingName, proplist, -1, FALSE);
twApi_DeletePropertyList(proplist);

}

Execute a Service
This helper function executes a service on a named entity on the ThingWorx
Platform.
enum msgCodeEnum twApi_InvokeService(enum entityTypeEnum entityType,

char * entityName, char * serviceName,
twInfoTable * params, twInfoTable ** result, int32_t timeout,

char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the service belongs

to. Enumeration values can be found
in twDefinitions.h.

entityName Input The name of the entity that the service
belongs to.

serviceName Input The name of the service to execute.
params Input A pointer to an infotable containing the

parameters to be passed in to the service.
The calling function will retain ownership
of this pointer and is responsible for
cleaning up the memory after the call is
complete.

result Input/Ouput A pointer to a twInfoTable pointer. In
a successful request, this parameter will
end up with a valid pointer to a
twInfoTable that is the result of the
service invocation. The caller is
responsible for deleting the returned
primitive using twInfoTable_
Delete. It is possible for the returned

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 60

Parameter Type Description
pointer be a NULL if an error occurred or
no data is returned.

timeout Input The time (in milliseconds) to wait for a
response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is
in the disconnected state of the duty cycle,
the API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See twDefinitions.h for the
enumeration definition.

Trigger an Event
This helper function triggers a specific event on a named entity on the ThingWorx
Platform.
enum msgCodeEnum twApi_FireEvent(enum entityTypeEnum entityType,
char * entityName, char * eventName,
twInfoTable * params, int32_t timeout, char forceConnect)

The following table lists and describes the parameters for this helper function:

Parameter Type Description
entityType Input The type of entity that the service belongs

to. Enumeration values can be found
in twDefinitions.h.

entityName Input The name of the entity that the service
belongs to.

eventName Input The name of the event to trigger.
params Input A pointer to an infotable containing the

parameters to be passed to the event. The
calling function will retain ownership of
this pointer and is responsible for cleaning
up the memory after the call is complete.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 61

Parameter Type Description
timeout Input The time (in milliseconds) to wait for a

response from the server. A value of -1
uses the DEFAULT_MESSAGE_TIMEOUT
as defined in twDefaultSettings.h.

forceConnect Input A Boolean value. If TRUE and the API is
in the disconnected state of the duty cycle,
the API will force a reconnect to send the
request.

Return:

• msgCodeEnum— the result of the call. See src/api/
twDefinitions.h for the enumeration definition.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 62

6
Building an Application

Introduction...64
Building Your Applications..64
Supporting New Platforms..65

Use the information presented here to build the example applications as well as
your own applications. As applicable, you can reuse build files from the examples
or modify a build file to support a new platform.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 63

Introduction
The C SDK is a set of ANSI C header and source files that can be easily
integrated into any build environment. There is are example applications in the
examples directory with build files for both a Make-based and Microsoft Visual
Studio environments. Both the Visual Studio solution and the Makefile-based
build have separate ‘projects’ for independently building a statically linkable
library that can be reused for any other applications. The Visual Studio project for
building the library is found in build/platforms/win32.
The Makefile structure is designed to aid in porting and cross compilation and
should be used as a starting point for non-Windows based ports. There is a generic
Makefile used to build the library that is found in the build directory. This
Makefile in turn includes a platform-specific makefile that contains all the
compiler-specific and processor-specific settings for that particular platform.
To build the library, run the following command in the build directory:
make PLATFORM=<your platform> BUILD=<debug|release>

Where:

• The PLATFORM specified must match the name of a subdirectory of the
build/platforms directory and follow the pattern compiler-os-
processor (for example, gcc-linux-x86). If a PLATFORM is not
specified, the default is gcc-linux-x86-32, which builds a 32-bit library
for Linux on the x86 processor using the gcc compiler.

• The BUILD specifier lets you create either a debug or release build. The
release build optimizes for code size and strips all symbols (and potentially
logging) to create a significantly smaller executable, on the order of 5 times
smaller than the debug version.

Building Your Applications
In each of the example application build directories there is a file named
CommonSettings (linux) or CommonSettings.targets (win32) that
contains the configuration settings for how the SDK should be built for your
application. If using any of the preprocessor definitions, incorporate these settings
into your project file (win32) or Makefile (linux). The C SDK examples should be
used as a template for how to do this. For Windows, your project can inherit the
settings that are defined in your overall solution. However, to do this, you must
hand edit your *.vcxproj file and add the following somewhere within the
<Project> XML element:
<PropertyGroup Condition="'$(SolutionDir)' == '' or

'$(SolutionDir)' == '*undefined*'">
<SolutionDir>.\</SolutionDir>

</PropertyGroup>
<Import Project="$(SolutionDir)CommonSettings.targets"

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 64

Condition="exists('$(SolutionDir)CommonSettings.targets')" />

If you are using a Make system, your Makefile should include the following lines:
include ./Make.CommonSettings
include $(TW_SDK_ROOT)/build/Make.settings

In all cases, it is STRONGLY recommended that you use one of the provided
examples as a starting point for your customization.

Supporting New Platforms
If you are using a platform that is different than the provided options, modify a
platform-specific Makefile to support your processor and toolchain. The Makefile
should be named Makefile.<compiler-os-processor> and placed in a
sub-directory called build/platforms/< compiler-os-processor>.
As an example, below is the platform and application specific portion of the
Makefile for a native Linux build on a 32-bit X86 platform.
The C SDK is designed for portability and can be ported to most any OS, RTOS,
or even simple taskers. In your Makefile you must specify what OS you will be
using. You do this by defining TW_OS_INCLUDE to point to the required include
file for your OS, as shown here:
Set up your compiler and link options here.

TOOLROOT = /usr # Points to the root directory of the toolchain

TOOL_PREFIX = # Typically defined if you are cross compiling
e.g. arm-linux-gnueabi-

CCDIR = ${TOOLROOT}/bin

LIBDIR = ${TOOLROOT}/lib

INCDIR = ${TOOLROOT}/include

export LD_LIBRARY_PATH=$(TOOLROOT)/lib/gcc

OS_INCLUDE = "twLinux.h"

CC = ${CCDIR}/$(TOOL_PREFIX)gcc

CC_OPTS = -DTW_OS_INCLUDE='$(OS_INCLUDE)' \

-Wall -D_GNU_SOURCE -D_FILE_OFFSET_BITS=64 -DCC_GNU \

-pthread -fPIC -ffunction-sections -fdata-sections

LINKER = $(CC)
LIBOPTS = -pthread -fPIC -Wl,--gc-sections -L${LIBDIR}

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 65

STATIC_LIBS =
AR = ${CCDIR}/$(TOOL_PREFIX)ar cru
RANLIB = ${CCDIR}/$(TOOL_PREFIX)ranlib

OS FILES
OS_INC_DIR =
OS_SRCS = $(TW_SDK_ROOT)/src/porting/twLinux.c
OS_DEFS =
OS_LIBS =
OS_LIB_DIR =

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 66

7
Porting to Another Platform

Requirements for Platforms..68
Defining the Chosen OS ..69
TLS Support ...69
Logging Functions ...70
Memory Management Functions ..71
Date/Time Functions..71
Synchronization Functions ...72
Socket Functions...73
Tasker Functions ...74
File System Functions ...74
Native Threads..75

To port to a platform other than those that the SDK currently supports (with files
specifically for the platforms), you’ll need the information presented here.
Included here is information about defining the OS, TLS support, and the various
types of functions (logging, memory management, date/time, synchronization,
socket).

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 67

Requirements for Platforms
The ThingWorx C SDK is designed for easy porting to even the most basic of
platforms. The key requirements for the platform are as follows:

• ANSI C compiler and run time support
• TCP/IP stack
• Dynamic memory allocation (malloc, calloc, free)
• Millisecond granularity timer, preferably with a Real Time Clock
• Some form of Mutual Exclusion capability (Mutex, Critical Section, Spinlock,

etc.)
• Tick Timer Interrupt/Callback capability (if using the built-in tasker)
• File System functions if using the File Transfer capability of the SDK
• Threads (optional)
All custom configurations for a platform are typically encapsulated in a single C
source and header file pair. For example, the SDK comes with example ports for
Windows and Linux (or any POSIX environment). The files are located in the
porting directory and are twWindows.h/twWindows.c and twLinux.h/
twLinux.c respectively. It is strongly recommended that you start with one of
these files as the basis for your porting efforts. The Linux port will be used as an
example in the sections that follow.

Third-party Libraries Required for a Buiild
The C SDK bundle provides the complete libraries for third-party software used
by the SDK. However, you do not need all of them to compile. Here is an example
from the Makefile of the third-party libraries you need:
TLS_SRCS = crypto/aes.c crypto/bigint.c crypto/crypto_misc.c crypto/hmac.c \

crypto/sha256.c crypto/md5.c crypto/rc4.c crypto/rsa.c crypto/sha1.c \
ssl/asn1.c ssl/gen_cert.c ssl/loader.c ssl/os_port.c \
ssl/p12.c ssl/tls1.c ssl/tls1_clnt.c ssl/x509.c ssl/tls1_svr.c

TOMCRYPT_SRCS = tomcrypt/src/ciphers/des.c
tomcrypt/src/hashes/md4.c
tomcrypt/src/hashes/md5.c
tomcrypt/src/hashes/sha1.c
tomcrypt/src/misc/error_to_string.c
tomcrypt/src/misc/crypt/crypt_argchk.c
tomcrypt/src/misc/base64/base64_encode.c
tomcrypt/src/misc/base64/base64_decode.c

NTLM_SRCS = ntlm/ntlm.c

WC_SRCS = wildcard/wildcard.c

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 68

Defining the Chosen OS
When building the library or an application, you must tell the compiler to include
the appropriate header file for your port. The definition of which OS to use is
done in your platform specific Makefile. In the supplied Makefiles for building on
Linux it is:
OS_INCLUDE = "twLinux.h"

And then in the compiler options as:
DTW_OS_INCLUDE='$(OS_INCLUDE)'

The actual inclusion of the appropriate header file based on the above mentioned
preprocessor definition is done in the file porting/twOSPort.h as follows:
#include TW_OS_INCLUDE

If you are not using Make as your build environment, you must ensure that the
following conditions are met:

1. Define the preprocessor macro TW_OS_INCLUDE to point to your platform-
specific header file as described below, and

2. Ensure that only the source files listed in /build/Makefile are included
in your build. This step is important as the C SDK includes several third party
open source libraries that may have test applications and extraneous source
files that are not part of the C SDK. However, to maintain the integrity of the
open source library, those files may be included in the C SDK distribution.

The platform-specific include file mentioned above must define certain entities,
which are listed and categorized in the sections that follow.

TLS Support
The C SDK has a pluggable security layer, but it defaults to using the built-in
AxTLS library for full TLS 1.1 compliant certificate-based authentication and
128-bit AES encryption. The AxTLS is an extremely lightweight (~50KB) TLS
client implementation, but there may be good reasons for using other security/
encryption layers, such as HW-based acceleration or a need for a FIPS compliant
implementation based on OpenSSL. If you choose to use a different TLS library
you should point TW_TLS_INCLUDE to the required header file for your
implementation. Refer to the TLS Provider Plugins on page 77 section for further
information. The No_TLS option will result in clear-text communications
between your application and the ThingWorx Platform. If you choose to use that
setting you must also #define NO_TLS.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 69

Note
The NO_TLS option is provided as a convenience for development purposes,
but is NOT recommended for any production implementations.

/********************************/
/* Which TLS Library? */
/********************************/
/*
Define which pluggable TLS library is used. Default is AxTLS.
The NO_TLS option turns off encryption altogether. This is
useful for debugging but IS NOT RECOMMENDED
FOR PRODUCTION ENVIRONMENTS. Refer to the documentation
on how to add another TLS library.
*/

#define TW_TLS_INCLUDE "twAxTls.h"
/*#define TW_TLS_INCLUDE "twOpenSSL.h" */
/***
#define TW_TLS_INCLUDE "twNoTls.h"
#define NO_TLS

For details, see also the Doxygen documentation provided with the SDK bundle.

Logging Functions
The C SDK has a pluggable logging provider that defaults to simple printf
statements. The function definition is in the utils/twLogger.c file. Your
platform/OS specific header file also defines some macros for logging, as shown
below.
/* Logging */
#ifdef _DEBUG
#ifndef DBG_LOGGING
#define DBG_LOGGING
#endif
#endif
#ifdef DBG_LOGGING
#define TW_LOGGER_BUF_SIZE 4096 /* Max size of log buffer */
#define TW_LOG(level, fmt, ...) twLog(level, fmt, ##__VA_ARGS__)
#define TW_LOG_HEX(msg, preamble, length) twLogHexString(msg, preamble, length)
#define TW_LOG_MSG(msg, preamble) twLogMessage(msg, preamble)
#else
#define TW_LOGGER_BUF_SIZE 1
#define TW_LOG(level, fmt, ...)
#define TW_LOG_HEX(msg, preamble, length)
#define TW_LOG_MSG(msg, preamble)
#endif

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 70

To minimize the code footprint of a released application, the default for logging is
that it is enabled for debug builds and entirely disabled for release builds. Both
the logging functions and buffer size need to be defined if logging is enabled. The
macros TW_LOG_HEX and TW_LOG_MSG are used to display the hex bytes
moving over the wire and the actual message content, respectively. These
functions tend to have a serious impact on performance and are not recommended
for use in a released system.
The logging system also provides a convenient way for you to define you own
logging function without changing these macros. This function is
int twLogger_SetFunction(log_function f);

For details about this function, refer to the Doxygen documentation provided with
the SDK bundle.

Memory Management Functions
The SDK uses dynamic memory allocation and de-allocation. In all but the most
basic of platforms, this means the use of the standard C malloc, calloc, and free
functions. The SDK does not use realloc itself, but any underlying TLS library
may. To create an abstraction layer, the SDK uses #defines to give you the
flexibility of creating your own implementations of these functions. These
definitions, which are required, and their most basic implementations are as
follows:
#define TW_MALLOC(a) malloc(a)
#define TW_CALLOC(a, b) calloc(a,b)
#define TW_REALLOC(a, b) realloc(a, b)
#define TW_FREE(a) free(a)

Date/Time Functions
The SDK requires a timer with millisecond granularity for things such as
messaging timeouts and task scheduling. In addition, some form of real-time
clock may be required if using DATETIME base types or the standard logging
plugin. The DATETIME base type uses the standard javascript representation of
milliseconds since the epoch of midnight 1/1/1970. In the Linux environment this
is represented as an unsigned 64-bit integer with a direct correlation to the number
of milliseconds, but the SDK makes no requirement that a DATETIME must be a
simple element.
/* Time */
typedef uint64_t DATETIME; /* AS DEFINED IN LINUX.H */

To support potentially complex DATETIME structures, a port of the SDK must
provide a few DATETIME manipulation and comparison functions. The function
definitions are in the file, twOSPort.h, but the implementations are typically in
your OS-specific C file, or in the file, twLinux.c for a Linux port. The required

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 71

functions are listed and described in the table that follows. For the signature and
parameter definitions for the functions, refer to the Doxygen documentation
provided with the SDK bundle.

To Use this function
Compare two DATETIME entities and returns a value
of TRUE if t1 > t2 or FALSE if not.

twTimeGreaterThan

Compare two DATETIME entities and returns a
TRUE value if t1 < t2 or FALSE if not.

twTimeLessThan

Add a number (msec) of milliseconds to the value in
t1.

twAddMilliseconds

Get the current millisecond count since the system
started (or since the epoch if the system time has
millisecond granularity).
On systems where the real-time clock has a
millisecond granularity, it is recommended that this
value be the same as the current system time,
representing the current date/time.

twGetSystemMillisecond-
Count

Get the current system time, representing
milliseconds since the epoch. If utc is TRUE (the
default for the SDK), the time is corrected to
Universal Coordinate Time (UTC).

twGetSystemTime

Get the current system time and converts it to a string
using strftime formatting.

twGetSystemTimeString

Convert a DATETIME to a string using strftime
formatting.

twGetTimeString

Delay execution. In a single-threaded, single-
processor system, this may be a blocking call.

twSleepMsec

Synchronization Functions
The SDK may run in a multithreaded or multitasking environment. Therefore, it is
important to protect access to certain data structures. The functions described in
the following table provide such access protection. While they may be stubbed
out in a single-tasking environment, it is highly recommended that these functions
be fully implemented with whatever facility your OS provides. Note that
functions using the TW_MUTEX typedef assume that this will be a pointer to
whatever structure or synchronization mechanism you wish to use.

To Use this function
Create a synchronization entity. twMutex_Create
Delete a synchronization entity and free up its
memory.

twMutex_Delete

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 72

To Use this function
Lock the synchronization entity. twMutex_Lock
Unlock the synchronization entity. twMutex_Unlock

For more information about these functions, refer to the Doxygen documentation
provided with the SDK bundle.

Socket Functions
The C SDK does not include a TCP/IP stack. Rather, it assumes that the
underlying platform provides that functionality. To that end, the SDK has defined
a series of wrapper functions to mask the underlying native socket functions. The
function definitions use an underlying twSocket structure that abstracts away
some of the differences in how certain platforms deal with socket descriptors – for
example, Linux uses an int while Windows uses a HANDLE. The structure is
defined in the file, src/porting/twOSPort.h, as follows:
typedef struct twSocket {

TW_SOCKET_TYPE sock; /* socket descriptor */
TW_ADDR_INFO addr; /* address to use */
TW_ADDR_INFO * addrInfo; /* Addr Info struct head - use to free */
char state;

} twSocket;

The actual definition of and TW_ADDR_INFO and the implementation of the
functions above should be done in your platform-specific C file. The following
table lists and describes the socket functions that must be provided by a port. For
signatures, parameter details, and return information, refer to the Doxygen
documentation provided with the SDK.

To Use this function
Allocate and initialize a socket structure. twSocket_Create
Establish a connection to the specified host/port pair. twSocket_Connect
Re-establish a connection to the specified host/port
pair. The underlying socket will be torn down and
recreated, but all other twSocket parameters
should remain intact.

twSocket_Reconnect

Close a previously opened connection. twSocket_Close
Check to see if data is available on a socket. Use this
function to prevent a twSocket_Read call from
blocking permanently if no data is available. This
function is especially important if using the built-in
tasker, which cannot have tasks that block.

twSocket_WaitFor

Read data from a socket. twSocket_Read
Write data to a socket. twSocket_Write

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 73

To Use this function
Delete a twSocket structure. This function should
close the socket if it is still open before deleting the
structure.

twSocket_Delete

Get the error code of the last error that occurred
while using a socket. Note that this is typically a
system-wide call and not a call to a specific socket.

twSocket_GetLastError

Tasker Functions
The C SDK has a simple built-in tasker that can be used in conjunction with or in
place of an underlying OS. The key requirement for the underlying architecture is
to provide some sort of tick-timer that allows the execution of what could be a
relatively long running callback function at one millisecond intervals. The
callback function is twTaskerStart. This function initializes the tasker by
setting up a mechanism to call the tickTimerCallback function every
millisecond. This function call is blocking, so it is best to use some separate
thread of execution, or at least re-enable priority interrupts before making this call.
This function is called only once when a process using the API starts.
To shut down the tickTimerCallback mechansim, use the twTaskerStop
function. Call this function only once when a process using the API ends.
For signatures, parameter details, and return information for these functions, refer
to the Doxygen documentation provided with the SDK.

File System Functions
To use the file transfer or directory browsing capability of the C SDK, implement
the functions listed in the following table. For signatures, parameter details, and
return information, refer to the Doxygen documentation provided with the SDK.

To Use this function
Retrieve information about a directory entry
(file or subdirectory).

twDirectory_GetFileInfo

Check if a directory entry (file or directory)
exists.

twDirectory_FileExists

Create a file. twDirectory_CreateFile
Move a file. twDirectory_MoveFile
Delete a file. twDirectory_DeleteFile
Create a directory. twDirectory_CreateDirectory
Delete the specified directory (and all its
contents).

twDirectory_DeleteDirectory

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 74

To Use this function
Iterate through a directory, retrieving the
information of the next file or subdirectory.

twDirectory_IterateEntries

Retrieve the last error that occurred as a result
of a file system activity.

twDirectory_GetLastError

Native Threads
With the built-in tasker, the C SDK has does not depend on a threading OS.
However, if one is present, there are advantages to using native threads. Therefore,
the C SDK provides a wrapper layer around native threads that maps tasks as
defined for the built-in tasker to native threads. Porting the wrapper to a native
threading model is straightforward and requires the implementation of only a few
functions. These functions are defined in the file src/porting/
twThreads.h.
The twThread structure follows:
typedef struct twThread {

TW_THREAD_ID id;
twTaskFunction func;
uint32_t rate;
char isRunning;
char isPaused;
char shutdownRequested;
char hasStopped;
void * opaquePtr;

}twThread;

The following table explains which function to use to perform an operation. For
details, refer to the Doxygen documentation provided with the SDK.

To Use this function
Create a new thread and optionally start
it.

twThread_Create

Stop a thread and free up the thread
structure memory.

twThread_Delete

Start a thread. twThread_Start
Stop a thread and optionally specify a
number of milliseconds to wait for the
thread to exit before forcefully killingit.

twThread_Stop

Pause the execution of a thread. twThread_Pause
Resume the execution of a thread. twThread_Resume
Check if a specified thread is running. twThread_IsRunning
Check if a specified thread is paused. twThread_IsPaused
Check if a specified thread is stopped. twThread_IsStopped

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 75

8
TLS Provider Plugins

TLS Implementation (AxTLS) ...78

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 77

TLS Implementation (AxTLS)
The ThingWorx C SDK has a built-in TLS implementation which is based on the
open source AxTLS library. This library is a lightweight portable implementation
of TLS and is sufficient for most implementations. However, if working with a
platform that already has another TLS implementation, such as OpenSSL, or has
built-in hardware acceleration, it may be desirable to use that functionality instead
of AxTLS. To that end, the SDK has been designed with wrapper functions that
closely follow the OpenSSL API in order to make it easy to plug in your own TLS
implementation. Selection of which TLS implementation to use is done in the
main src/config/YourPlatformName.h file as follows:
/********************************/
/* Which TLS Library? */
/********************************/
/*
Define which pluggable TLS library is used. Default is AxTLS.
The NO_TLS option turns off encryption altogether. This is
useful for debugging but IS NOT RECOMMENDED FOR PRODUCTION
ENVIRONMENTS. Refer to the documentation on how to add
another TLS library.
*/
#define TW_TLS_INCLUDE "twAxTls.h"
/* #define TW_TLS_INCLUDE "twOpenSSL.h" */

If using your own TLS implementation, add your own definition and point TW_
TLS_INCLUDE to your header file.
The functions defined in twTLS.h can be used for any TLS connections that
your application needs to make. These functions are the abstracted interface that
sit on top of the underlying TLS implementation.
Consistent with both the OpenSSL and AxTLS APIs, the SDK uses a structure for
an SSL context that manages all the SSL sessions, and a structure for an SSL
session itself. In addition, the APIs expose several functions for operations. The
definitions and functions are exposed with preprocessor definitions. For these
details, refer to the Doxygen documentation provided with the SDK.

Item Description
TW_SSL_CTX The SSL context structure as defined by the

implementation. Mapped directly to SSL_CTX in
AxTLS.

TW_SSL The SSL session structure as defined by the
implementation. Mapped directly to SSL in AxTLS.

TW_SSL_SESSION_
ID_SIZE

The SSL session structure as defined by the
implementation. Mapped directly to SSL in AxTLS.

TW_SSL_SESSION_
ID_SIZE

The size of an SSL session ID as defined by the
implementation. This ID is used for session
resumption. Mapped directly to SSL_SESSION_
ID_SIZE in AxTLS.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 78

Item Description
TW_GET_CERT_SIZE Returns the maximum number of certificates allowed

by the implementation. Mapped directly to ssl_
get_config(SSL_MAX_CERT_CFG_OFFSET)
in AxTLS.

TW_GET_CA_CERT_
SIZE

Returns the maximum number of CA certificates
allowed by the implementation. Mapped directly to
ssl_get_config(SSL_MAX_CA_CERT_CFG_
OFFSET) in AxTLSL.

TW_NEW_SSL_CTX Creates and initializes new instance of an SSL_CTX.
Maps directly to ssl_ctx_new in AxTLS.

TW_NEW_SSL_
CLIENT(a,b,c,d)

Creates and initializes a new instance of an SSL
structure within the provided SSL_CTX.
Parameters:
• a— pointer to a TW_SSL_CTX structure.
• b— a TW_SOCKET_TYPE value that is the

descriptor of the socket to be used. The
underlying socket should not be opened before
calling this function.

• c— session id. The session ID if session
resumption is being used. The SDK does not use
session resumption and sets this to NULL.

• d— size of the session ID that was passed in.
Maps directly to ssl_client_
new(a,((twSocket *)b)->sock,c,d) in
AxTLS.

TW_HANDSHAKE_
SUCCEEDED

Returns a Boolean (char) value, TRUE if the
SSL handshake succeeded and data can be securely
exchanged, FALSE if otherwise. Maps to ((ssl_
handshake_status(ssl)) == SSL_OK) in
AxTLS.

TW_SSL_FREE(a) Close any socket and free up any memory associated
with an SSL session.
Parameters:
• a— pointer to the TW_SSL structure to free.
Maps directly to ssl_free(a) in AxTLS.

TW_SSL_CTX_
FREE(a)

Free up any memory associated with an SSL context.
Parameters:

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 79

Item Description
• a— pointer to the TW_SSL_CTX structure to

free.
Maps directly to ssl_ctx_free(a) in AxTLS.

TW_SSL_
WRITE(a,b,c)

Writes data out the secure connection.
Parametes:
• a— pointer to the TW_SSL structure to write to.
• b— pointer to the buffer containing the data to

write.
• c— the amount of data to write.
This result of this macro should contain the number
of bytes sent, or a negative number if an error
occurred. Maps to ssl_write in AxTLS.

TW_SSL_READ(a, b,
c, d)

Reads data from the secure connection.
Parameters:
• a— pointer to the TW_SSL structure to read

from.
• b— pointer to the buffer that the data should be

placed in.
• c— the amount of data to read.
• d— the number of milliseconds to wait while

trying to read the desired amount of data.
This result of this macro should contain the number
of bytes read, or a negative number if an error
occurred. Maps to ssl_read in AxTLS.

TW_USE_CERT_
FILE(a,b,c)

Loads an X509 certificate in PEM or DER format
from the file specified.
Parameters:
• a— pointer to the TW_SSL_CTX structure load

the certificate into.
• b— name of the file containing the certificate.
• c— a password to access the certificate (if

required).

Maps to ssl_obj_load(a, SSL_OBJ_X509_
CERT, b, NULL) in AxTLS.

TW_USE_KEY_
FILE(a,b,c,d)

Loads an encrypted key in PEM or DER format from
the file specified.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 80

Item Description

Parameters:
• a— pointer to the TW_SSL_CTX structure to

read from
• b— name of the file containing the key
• c— the type of key
• d— a password to access the key.
Maps to ssl_obj_load(a, SSL_OBJ_RSA_
KEY, b, d) in AxTLS.

TW_USE_CERT_
CHAIN_FILE(a,b,c)

Loads a certificate chain in PEM or DER format from
the file specified.
Parameters:
• a— pointer to the TW_SSL_CTX structure load

the certificate into.
• b— name of the file containing the certificate

chain.
• c— a password to access the certificate (if

required).
Maps to ssl_obj_load(a, SSL_OBJ_X509_
CERT, b, NULL) in AxTLS.

TW_SET_CLIENT_CA_
LIST(a,b)

Sets the list of supported CAs from the file specified.
Parameters:
• a — pointer to the TW_SSL_CTX structure load

the certificate into.
• b — pointer to the CA list.
Maps to ssl_obj_load(a, SSL_OBJ_X509_CERT,
(const char *)b, NULL)) in AxTLS.

TW_VALIDATE_
CERT(TW_SSL * ssl,
char selfSignedOk)

Inline function that validates the received certificate.
Parameters:
• ssl— pointer to the TW_SSL structure that has

received the certificate
• selfSignedOk— boolean, set to TRUE if self-

signed certificates are allowed, FALSE if not.
Default is FALSE.

Returns zero if the certificate is valid, non-zero if not.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 81

Item Description
TW_ENABLE_FIPS_
MODE(a)

Enables FIPS mode.
Parameters:
• a – pointer to the TW_SSL_CTX structure
Returns zero if successful or an error code if FIPS is
supported but enabling failed or TW_FIPS_MODE_
NOT_SUPPORTED if the TLS layer does not support
FIPS

TW_GET_X509_
FIELD(TW_SSL *
ssl, char field)

Inline function that gets the value of a filed in the
certificate.
Parameters:
• ssl— pointer to the TW_SSL structure that has

received the certificate
• field – char, the field to retrieve. Fields

supported must be SUBJECT_CN, SUBJECT_O,
SUBJECT_OU, ISSUER CN, ISSUER_O,
ISSUER_OU

Returns the value of the field, or NULL if the field is
not found.

Note
As of release 1.2 of the C SDK, the default setting for DEFAULT_SOCKET_
READ_TIMEOUT in twDefaultSettings.h is 500 ms. If you are using
AxTLS and a web socket read times out in the middle of reading a record, the
SSL state is lost. As a result, the SDK tries to start read the record header
again, and the operation fails. To detect this situation, check the log for the
SDK for the error, twTlsClient_Read: Timed out after X
milliseconds, and consider increasing the value of the DEFAULT_
SOCKET_READ_TIMEOUT. You can change the setting at runtime by
modifying the value of twcfg.socket_read_timeout.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 82

A
Error Codes

This appendix lists and categorizes the error messages (and their codes) that are
returned by the C SDK. You can find all of the definitions for these messages in
the twErrors.h file, located in the api subdirectory of the SDK installation.
The types of messages include:
• General Errors on page 84
• Websocket Errors on page 84
• Messaging Errors on page 86
• Primitive and InfoTable Errors on page 88
• List Errors on page 88
• API Errors on page 89
• Tasker Errors on page 90
• Logging Errors on page 90
• Utils Errors on page 90
• System Socket Errors on page 91
• Message Code Errors on page 92
• Subscribed Properties Errors on page 95
• File Transfer Errors on page 95
• Tunneling Errors on page 96

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 83

Note
The error codes are presented in the same order as they appear in
twErrors.h. The 5xx series is for errors for the List component. None are
defined for this component at this time, so the sequence jumps from the 4xx to
6xx series.

General Errors
The following table lists general errors and their corresponding codes:

Code Message Troubleshooting
100 TW_UNKNOWN_ERROR An error occurred, but it was not

recognized by the SDK. You should
not see this error

101 TW_INVALID_PARAM The parameter value is not allowed.
Typically indicative of a NULL
pointer being passed in where a
NULL pointer is not allowed.

102 TW_ERROR_ALLOCATING_
MEMORY

The specified amount of memory
could not be allocated. Make sure
that components free memory when
they exit. Make sure you free up
memory when finished using data
structures. This error is very serious,
and your application will usually
terminate soon after.

103 TW_ERROR_CREATING_
MTX

An error occurred while creating a
mutex.

Websocket Errors
AWebsocket connection is run using a system socket; a system socket sits one
layer lower in the networking stack. All Websocket errors indicate some general
issue communicating with the ThingWorx Platform. The following table lists
websocket errors, their corresponding codes, and an explanation of the issue.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 84

Note
As of release 1.2 of the C SDK, the default setting for DEFAULT_SOCKET_
READ_TIMEOUT in twDefaultSettings.h is 500 ms. If you are using
AxTLS and a web socket read times out in the middle of reading a record, the
SSL state is lost. As a result, the SDK tries to start read the record header
again, and the operation fails. To detect this situation, check the log for the
SDK for the error, twTlsClient_Read: Timed out after X
milliseconds, and consider increasing the value of the DEFAULT_
SOCKET_READ_TIMEOUT. You can change the setting at runtime by
modifying the value of twcfg.socket_read_timeout.

Code Message Troubleshooting
200 TW_UNKNOWN_

WEBSOCKET_ERROR
An unknown error occurred on the
websocket. You should not see this
error.

201 TW_ERROR_
INITIALIZING_
WEBSOCKET

An error occurred while initializing
the websocket. Check your
websocket configuration parameters
for validity.

202 TW_TIMEOUT_
INITIALIZING_
WEBSOCKET

A timeout occurred while
initializing the websocket. Check
the status of the connection to the
ThingWorx Platform.

203 TW_WEBSOCKET_NOT_
CONNECTED

The websocket is not connected to
the ThingWorx Platform. The
requested operation cannot be
performed.

204 TW_ERROR_PARSING_
WEBSOCKET_DATA

An error occurred while parsing
websocket data. The parser could
not break down the data from the
websocket.

205 TW_ERROR_READING_
FROM_WEBSOCKET

An error occurred while reading
data from the websocket. Retry the
read operation. If necessary, resend
the data.

206 TW_WEBSOCKET_FRAME_
TOO_LARGE

The SDK is attempting to send a
websocket frame that is too large.
The Maximum Frame Size is set
when calling twAPI_

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 85

Code Message Troubleshooting
Initialize and should always
be set to the Message Chunk Size
(twcfg.message_chunk_
size).

207 TW_INVALID_
WEBSOCKET_FRAME_TYPE

The type of the frame coming in
over the websocket is invalid.

208 TW_WEBSOCKET_MSG_
TOO_LARGE

The application is attempting to
send a message that has been
broken up in to chunks that are too
large to fit in a frame. You should
not see this error.

209 TW_ERROR_WRITING_TO_
WEBSOCKET

An error occurred while writing to
the Web socket.

210 TW_INVALID_ACCEPT_
KEY

The Accept key sent earlier from
the ThingWorx Platform is not
valid.

Messaging Errors
The following table lists the error codes and messages for Messaging errors and
provides some troubleshooting information.

Code Message Troubleshooting
300 TW_NULL_OR_INVALID_MSG_

HANDLER
The message handler
singleton has not been
initialized.

301 TW_INVALID_CALLBACK_STRUCT The callback structure was
not valid. Check that your
application properly
implements the callback.

302 TW_ERROR_CALLBACK_NOT_
FOUND

The specified callback was
not found. Check the
callback parameters passed to
the function.

303 TW_INVALID_MSG_CODE An attempt to set an invalid
message code was made.
Valid message codes are
defined in
twDefinitions.h. You
should not see this internal
error in your code.

304 TW_INVALID_MSG_TYPE A function was called with

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 86

Code Message Troubleshooting
an invalid message code.
Valid message codes are
defined in
twDefinitions.h. You
should not see this internal
error.

305 TW_ERROR_SENDING_MSG An error occurred while
sending the message. Check
the network connections and
the destination host. If
network connections and the
destination host are working
properly, check the
configuration of the
destination host to be sure it
is correct.

306 TW_ERROR_WRITING_OFFLINE_
MSG_
STORE

An error occurred while
writing to the offline
message store.

307 TW_ERROR_MESSAGE_TOO_LARGE The message was too large.
Check that the size you
configured for messages is
adequate for all expected
traffic. Consider increasing
the size.

308 TW_WROTE_TO_OFFLINE_MSG_
STORE

The message was not sent to
the ThingWorx Platform, but
was stored in the offline
message store. The message
will be delivered next time
the websocket is connected.

309 TW_INVALID_MSG_STORE_DIR The directory for the
message store was not
correct. Make sure the path is
valid and that you have write
permission.

310 TW_MSG_STORE_FILE_NOT_
EMPTY

The on-disk file that is uses
to store offline messages
contains some messages that
have not been sent yet. The
file name cannot be changed.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 87

Primitive and InfoTable Errors
The following table lists the errors related to the data structures, twPrimitive
and twInfoTable, and their supporting functions. It also provides suggestions
for troubleshooting. For more information about these data structures, refer to
twPrimitiveStructure on page 48 and twInfoTable on page 50.

Note
When creating an InfoTable, keep in mind that the twInfoTableRow
structure must contain the field values of the datashape in the same order as
in the datashape.

Code Message Troubleshooting
400 TW_ERROR_ADDING_

DATASHAPE_ENTRY
An error occurred while
attempting to add an entry (field)
to the DataShape.

401 TW_INDEX_NOT_FOUND Attempted to access a non-
existent field from a row in an
InfoTable. The index value must
be less than the number of fields
defined in the DataShape.

402 TW_ERROR_GETTING_
PRIMITIVE

The function twInfoTable_
GetPrimitive failed to
retrieve the requested primitive
from the InfoTable.

403 TW_INVALID_BASE_TYPE The specified base type is not
valid. Check the spelling in your
code, or select a different base
type. For a table of the available
base types, refer to Base Types on
page 48

List Errors
The following table lists the error related to lists (for example, subscribed
properties):

Code Message Troubleshooting
500 TW_LIST_ENTRY_NOT_

FOUND
The entry was not found in the
list. For example, the requested
property was not found in the list
of subscribed properties.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 88

API Errors
The following table lists the errors related to the API:

Code Message Troubleshooting
600 TW_NULL_OR_INVALID_

API_SINGLETON
The API singleton is either null or
invalid. This error occurs if the
API was not initialized properly.
Check the parameters that you are
passing to the initialize function.
Check the log.

601 TW_ERROR_SENDING_RESP An error occurred while sending a
response message to the
ThingWorx Platform.

602 TW_INVALID_MSG_BODY A message was received from the
ThingWorx Platform that had an
invalid or malformed message
body.

603 TW_INVALID_MSG_PARAMS A Property PUTwas received
from the ThingWorx Platform
with an empty parameters
InfoTable. The property value
will not be changed.

604 TW_INVALID_RESP_MSG The response message was not
valid. You should not see this
internal error.

605 TW_NULL_API_SINGLETON The API singleton was null. This
message indicates that the API
was not initialized properly.
Check the parameters that you are
passing to the initialize function.
Check the log.

606 TW_ERROR_CREATING_MSG An error occurred while creating
the message. This error typically
indicates an out-of-memory
condition.

607 TW_ERROR_INITIALIZING_
API

An error occurred while
initializing the API. Check the
parameters that you are passing to
the initialize function. Check the
log.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 89

Tasker Errors
The following table lists the errors related to the Tasker:

Code Message Troubleshooting
700 TW_MAX_TASKS_EXCEEDED You have attempted to create

more tasks than are allowed for
the built-in tasker. The maximum
number of tasks allowed is set at
compile time with the constant
TW_MAX_TASKS which is
defined in twDefinitions.h.
If you have many tasks running
you may wish to consider using
native threads if your platform
supports them.

701 TW_TASK_NOT_FOUND The specified task ID was not
found. Make sure the task ID
passed to this function is correct.
The task ID is returned from the
function call twTasker_
CreateTask.

Logging Errors
The following table lists the error related to logging:

Code Message Troubleshooting
800 TW_NULL_OR_INVALID_

LOGGER_SINGLETON
The logger singleton was not
initialized properly. This error
indicates a memory allocation
error. Check your TW_LOGGER_
BUF_SIZE setting in your
platform-specific header file in
the src/porting directory.

Utils Errors
The SDK uses Base64 encoding/decoding. The following table lists the related
errors. At this time, the code does not use them.

Code Message
900 TW_BASE64_ENCODE_OVERRUN

901 TW_BASE64_DECODE_OVERRUN

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 90

System Socket Errors
System Sockets are Operating System-provided networking APIs. The TW_
ERROR_WRITING_TO_SOCKET error in the System Socket category is a
general socket write error. All errors in this category are in the context of a
connection to ThingWorx Platform.
As appropriate, first check the network connection between the Thing where your
application is running and the ThingWorx Platform to resolve the problem. If a
proxy server is used between your Thing and the Platform, check that the proxy
server is operating properly. If so, check the configuration for the connection to
the proxy server.

Code Message Troubleshooting
1000 TW_ERROR_WRITING_TO_SOCKET General socket write error

encountered while writing to
the ThingWorx Platform.

1001 TW_SOCKET_INIT_ERROR An error occurred while
initializing the socket. The
network connection may
have dropped.

1002 TW_INVALID_SSL_CERT The SSL certificate provided
by the server was not valid or
was self-signed. Check your
certificate settings.

1003 TW_SOCKET_NOT_FOUND The socket was not found.
The network connection may
have dropped.

1004 TW_HOST_NOT_FOUND The specified ThingWorx
Platform was not found.
Check network connections
and make sure that your
application configuration
specifies a valid host address.

1005 TW_ERROR_CREATING_SSL_CTX An error occurred creating
the SSL context.

1006 TW_ERROR_CONNECTING_TO_
PROXY

An error occurred connecting
to the specified proxy server.
Make sure the proxy server
address is correctly specified.
Check network connections.

1007 TW_TIMEOUT_READING_FROM_
SOCKET

An attempt to read from a
socket timed out with no data
available.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 91

Code Message Troubleshooting
1008 TW_ERROR_READING_RESPONSE An error occurred while

reading the response from the
proxy server. Check your
proxy configuration in your
application.

1009 TW_INVALID_PROXY_
CREDENTIALS

The credentials presented to
the proxy server were not
valid. Check with the
administrator for the proxy
server and re-enter the
credentials for the proxy
server. NOTE: While the
connection to the proxy
server is not encrypted, the
credentials are obfuscated
using standard HTTP Basic,
Digest, or NTLM encoding.

1010 TW_UNSUPPORTED_PROXY_AUTH_
TYPE

The specified authentication
type for the proxy server is
not supported. Make sure that
the authentication type is
correctly specified in your
application.

1011 TW_ENABLE_FIPS_MODE_FAILED FIPS Mode could not be
enabled. Ensure that you are
using an OpenSSL library
with FIPS validated
cryptographic algorithms.

1012 TW_FIPS_MODE_NOT_SUPPORTED FIPS Mode is not supported.
Ensure that you are using an
OpenSSL library with FIPS
validated cryptographic
algorithms.

Message Code Errors
The message code errors can be returned when the SDK makes a request to the
ThingWorx Platform. They can also be the return values for property/service
requests executed by the application using the SDK. For example, if the server
queried the SDK application for the property ‘temperature’, but the application did

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 92

not have that property, it could return TW_NOT_FOUND. The server could also
return the same code if the application asked the server for a property that it did
not have defined.
Most of these are standard HTTP error codes. You can see more information about
them at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Code Message Troubleshooting
1100 TW_BAD_REQUEST The HTTP request contained

syntax errors, so the server
did not understand it. Modify
the request before attempting
it again..

1101 TW_UNAUTHORIZED The request requires
authentication. This error
results from a failed login
attempt — whether from
credentials that were not
valid or from the request
being sent before
authentication occurred.

1102 TW_ERROR_BAD_OPTION An option or a parameter for
a function has a value that is
not valid or is not spelled
correctly (and so is not
recognized).

1103 TW_FORBIDDEN The ThingWorx Platform is
denying you access to the
requested resource. Check
your permission settings on
the Platform.

1104 TW_NOT_FOUND This message is returned for
anything that was not found
— a property, a service, a
thing, a datashape, and so on.

1105 TW_METHOD_NOT_ALLOWED The specified method is not
allowed. Check the spelling
and syntax of your code.

1106 TW_NOT_ACCEPTABLE Not acceptable.
1107 TW_PRECONDITION_FAILED The precondition for the

operation was not met.
1108 TW_ENTITY_TOO_LARGE This error occurs if you

attempt to send a Property, or

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 93

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Code Message Troubleshooting
Service or Event parameters
that are too large for the
ThingWorx Platform to
handle.

1109 TW_UNSUPPORTED_CONTENT_
FORMAT

This error occurs if you
attempt to send a Property, or
Service or Event parameter
that has the wrong baseType
as defined on the ThingWorx
Platform.

1110 TW_INTERNAL_SERVER_ERROR An error occurred on the
ThingWorx Platform while
processing this request.

1111 TW_NOT_IMPLEMENTED The ThingWorx Platform
may return this error if you
attempt a function that is not
implemented.

1112 TW_BAD_GATEWAY A gateway could be bad if it
cannot communicate to the
next component in the chain.

1113 TW_SERVICE_UNAVAILABLE The requested service is not
defined. You could also use
the TW_NOT_FOUND error
code, but this one is more
specific.

1114 TW_GATEWAY_TIMEOUT If the application sends a
request to the ThingWorx
Platform and does not get a
response within some amount
of time, the service call
results in this error. The
amount of time is
configurable.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 94

Subscribed Properties Errors
The following table lists the errors related to subscribed properties:

Code Message Troubleshooting
1200 TW_SUBSCRIBEDPROP_MGR_

NOT_INTIALIZED
The Subscribed Properties
Manager is initialized by
twApi_Initialize
automatically. For this error to
occur, it is most likely that
other, more serious errors have
occurred. Investigate the other
errors first.

1201 TW_SUBSCRIBED_PROPERTY_
NOT_FOUND

The requested subscribed
property was not found.

File Transfer Errors
The following table lists the errors for the File Transfer component:

Code Message Troubleshooting
1300 TW_FILE_XFER_MANAGER_

NOT_
INITIALIZED

The File Transfer Manager has
not been initialized. The File
Transfer Manager is initialized
when twApi_Initialize
is called only if ENABLE_
FILE_XFER is defined. If you
wish to use file transfer
functionality make sure
ENABLE_FILE_XFER is
defined.

1301 TW_ERROR_CREATING_
STAGING_DIR

An error occurred while
creating the staging directory.
The error happens if there is an
invalid path or if you do not
have the proper permissions to
create the directory specified.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 95

Code Message Troubleshooting
1302 TW_FILE_NOT_FOUND The specified file for the

transfer was not found. Check
the name of the file specified. If
it is correct, check for the
presence of the file in the file
system at the specified location.

1303 FILE_TRANSFER_FAILED The file transfer operation
failed. The network connection
may have dropped during the
transfer, the destination for the
transfer may be unavailable
(down for maintenance or
power outage), or the MD5
checksum of the file indicated
invalid file content.

Tunneling Errors
The following table lists the errors related to the Tunneling Manager

Code Message Troubleshooting
1400 TW_TUNNEL_MANAGER_NOT_

INITIALIZED
The Tunnel Manager has not
been initialized. The Tunnel
Manager is initialized when
twApi_Initialize is
called only if ENABLE_
TUNNELING is defined. If you
wish to use tunneling
functionality make sure
ENABLE_TUNNELING is
defined.

1401 TW_TUNNEL_CREATION_
FAILED

The tunnel was not created.
This error could be because of
an out-of-memory condition.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 96

B
Callback Function Return Codes

The following table contains the acceptable return codes (msgCodeEnum) for all
Property and Service callback functions. These codes are defined in src/api/
twDefinitions.h. The callback functions are invoked as a result incoming
requests from the ThingWorx Platform. The property and service callback
function signatures are defined in src/api/twApi.h.

Return Code Returned When
HTTP Client Error Status Codes
TWX_SUCCESS = 0x40 0x40 (2.00) Success. The request

completes successfully.
TWX_BAD_REQUEST = 0x80 0x80 (4.00) Bad request. The HTTP

request contains syntax errors, so the
server cannot understand it. Modify the
request before attempting it again.

TWX_UNAUTHORIZED 0x81 (4.01) Unauthorized. The request
requires authentication. This error
results from a failed login attempt —
whether from credentials that were not
valid or from the request being sent
before authentication occurred.

TWX_BAD_OPTION 0x82 (4.02) Bad option. An option or a
parameter for a function has a value
that is not valid or is not spelled
correctly (and so is not recognized).

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 97

Return Code Returned When
TWX_FORBIDDEN 0x83 (4.03) Forbidden. The ThingWorx

Platform is denying you access to the
requested resource. Check your
permission settings on the Platform.

TWX_NOT_FOUND 0x84 (4.04) Not found. Anything is not
found — a property, a service, a thing,
a datashape, and so on.

TWX_METHOD_NOT_ALLOWED 0x85 (4.05) Method not allowed. The
specified method is not allowed. Check
the spelling and syntax of your code.

TWX_NOT_ACCEPTABLE 0x86 (4.06) Not acceptable.
TWX_PRECONDITION_FAILED =
0x8C

0x8C (4.12) Precondition failed. The
precondition for the operation is not
met.

TWX_ENTITY_TOO_LARGE 0x8D (4.13) Entity too large. An
attempt is made to send a Property, or
Service or Event parameter that is too
large for the ThingWorx Platform to
handle.

TWX_UNSUPPORTED_CONTENT_
FORMAT = 0x8F

0x8F (4.15) Unsupported content
format. An attempt is made to send a
Property, or Service or Event parameter
that has the wrong baseType as defined
on the ThingWorx Platform.

HTTP Server Error Status Codes
TWX_INTERNAL_SERVER_ERROR =
0xA0

0xA0 (5.00) Internal server error. An
error occurs on the ThingWorx
Platform while processing this request.

TWX_NOT_IMPLEMENTED 0xA1 (5.01) Not implemented. The
ThingWorx Platform may return this
error if you attempt a function that is
not implemented.

TWX_BAD_GATEWAY 0xA2 (5.02) Bad gateway. A gateway
could be bad if it cannot communicate
to the next component in the chain.

TWX_SERVICE_UNAVAILABLE 0xA3 (5.03) Service unavailable. The
requested service is not defined. You
could also use the TW_NOT_FOUND
error code, but this one is more
specific.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 98

Return Code Returned When
TWX_GATEWAY_TIMEOUT 0xA4 (5.04) Gateway timeout. If the

application sends a request to the
ThingWorx Platform and does not get a
response within some amount of time,
the service call results in this error. The
amount of time is configurable.

TWX_WROTE_TO_OFFLINE_MSG_
STORE

Wrote to offline message store. The
message is not sent to the ThingWorx
Platform, but instead is stored in the
offline message store. The message will
be delivered next time the websocket is
connected.

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 99

Copyright © 2015 PTC Inc. and/or Its Subsidiary Companies.
All rights reserved. 100

	ThingWorx C SDK Developer's Guide, v1.3.0
	Contents
	About this Guide
	Chapter 1 C SDK
	Introducing the C SDK
	Installing and Navigating the C SDK Directories
	Getting Started

	Chapter 2 Configuring the C SDK
	Configuring Components for an Application
	Configuring the Tasker
	Configuring File Transfer
	Configuring Application Tunneling
	Handling Offline Messages
	Additional Settings

	Minimizing Code Footprint

	Chapter 3 Setting Up an Application
	Overview
	Defining Properties
	Defining Events
	Define Property Callback Functions
	Define Service Callback Functions
	Create Your Tasks (Optional)
	Creating a Bind Event Handler (Optional)
	Create a File Transfer Event Handler (Optional)
	Create a Tunnel Event Handler (Optional)

	Chapter 4 Running the C SDK
	Initializing the API Singleton
	Registering Properties and Services
	Registering Events
	Binding Your Entities
	Initializing the File Manager (Optional)
	Initializing the Tunnel Manager (Optional)
	Creating a Bind Event Handler (Optional)
	Connect to the Server and Initiate any Defined Tasks

	Chapter 5 Interacting with the ThingWorx Platform
	Basic Data Structures
	twPrimitiveStructure
	Base Types
	twInfoTable

	Server-Initiated Interaction
	Property Access Callbacks
	Service Callbacks

	SDK Application-Initiated Interaction
	Read a Property
	Write a Property
	Push Properties
	Execute a Service
	Trigger an Event

	Chapter 6 Building an Application
	Introduction
	Building Your Applications
	Supporting New Platforms

	Chapter 7 Porting to Another Platform
	Requirements for Platforms
	Defining the Chosen OS
	TLS Support
	Logging Functions
	Memory Management Functions
	Date/Time Functions
	Synchronization Functions
	Socket Functions
	Tasker Functions
	File System Functions
	Native Threads

	Chapter 8 TLS Provider Plugins
	TLS Implementation (AxTLS)

	Appendix A Error Codes
	Appendix B Callback Function Return Codes

